

Master 2 – Cybersécurité – Année 2024/2025

Sécurité matérielle et

protection des firmwares :

menaces de bas niveau et

architectures de défense

Étude de l’utilisation combinée du TPM

2.0, du Secure Boot et de protections

hardware pour garantir l’intégrité du

firmware

Ivan KRIVOKUCA

Maître d’apprentissage : Monsieur Luc BOUGANIM

Tuteur enseignant : Professeur Patrice MARTIN

Président du jury : Professeur Osman SALEM

Établissement : Université Paris Cité

Entreprise : INRIA

2

Remerciement

Je souhaite tout d'abord remercier mon tuteur enseignent Patrice MARTIN, pour sa

disponibilité, ses conseils avisés et son accompagnement tout au long de ce mémoire.

Ma reconnaissance va également à mon maître d'apprentissage Luc BOUGANIM, qui

m'a accueilli au sein de l’INRIA et plus particulièrement dans l’équipe de recherche

PETRUS et qui m'a offert l'opportunité d'appliquer mes connaissances dans un contexte

professionnel stimulant.

Je tiens à remercier chaleureusement l'ensemble de l'équipe PETRUS pour leur accueil,

leur patience et leur bienveillance. Travailler à leurs côtés a été une expérience aussi

enrichissante sur le plan professionnel qu'humain.

Mes remerciements s'adressent également à l'équipe pédagogique de l’Université Paris

Cité pour la qualité de leur enseignement et leur accompagnement tout au long de ce

master.

Enfin, je ne saurais oublier ma famille et mes amis pour leur soutien inconditionnel et leurs

encouragements constants.

À toutes ces personnes qui ont contribué à faire de ces deux années une expérience

aussi formatrice qu'épanouissante, je tiens à exprimer ma plus profonde gratitude

3

Résumé

Ce mémoire examine l'évolution des cyberattaques ciblant les couches basses des

systèmes informatiques et analyse comparativement les mécanismes de protection

déployés sur les plateformes x86/x64 et les systèmes embarqués (ARM/RISC-V), avec

un focus particulier sur le Trusted Platform Module 2.0 (TPM 2.0).

Notre étude établit que la sécurité informatique, historiquement concentrée sur les

couches logicielles supérieures, révèle ses limites face à l'émergence d'attaques visant

le firmware et le matériel. L'analyse des menaces démontre une évolution vers des

techniques d'exploitation persistantes et furtives, telles que les rootkits UEFI, les bootkits

contournant le Secure Boot, les attaques par corruption mémoire, les injections de fautes

matérielles, et les exploitations d'interfaces. Pour les systèmes embarqués et IoT, nous

identifions des vulnérabilités spécifiques liées aux contraintes énergétiques et aux

longues durées de vie opérationnelle de ces appareils.

Notre analyse comparative des architectures de protection révèle des différences entre

ces dites plateformes. Les systèmes x86/x64 privilégient des solutions comme le Secure

Boot, des sécurités intégrées en plus dans les processeurs, et l'intégration du TPM sous

diverses formes (dTPM, fTPM, vTPM). Les systèmes embarqués adoptent des approches

adaptées à leurs contraintes, avec des architectures spécifiques. Sans oublier l’ajout des

Secure Elements et enclaves sécurisées. Ces mécanismes s'articulent autour de

principes fondamentaux : racines de confiance matérielles et isolation des

environnements d'exécution.

L'étude approfondie du TPM 2.0 met en lumière son rôle central dans la sécurisation du

processus de démarrage et la protection des données sensibles via ses fonctionnalités

de mesure d'intégrité, d'attestation et de scellement cryptographique. Cependant, notre

analyse critique identifie des vulnérabilités significatives : faiblesses d'implémentation,

attaques par canaux auxiliaires et contournements pratiques. Ces limitations remettent

en question l'efficacité du TPM comme solution unique de protection.

Ce travail conclut que malgré l'importance du TPM 2.0 dans l'établissement d'une chaîne

de confiance, aucun mécanisme isolé ne peut garantir une sécurité complète face à

l'évolution rapide des menaces.

4

Table des matières

1. Introduction 7

1.1 Contexte et motivations 7

1.2 Problématique et objectifs 8

1.2.1 Problématique 8

1.2.2 Objectifs 8

2. État de l’art des menaces matérielles et firmware 10

2.1 Attaques sur le firmware 10

2.1.1 Attaques sur l'UEFI/BIOS 10

2.1.2 Bootkits 14

2.2 Attaques sur les composants matériels 16

2.2.1 Attaque sur la mémoire 16

2.2.2 Attaques par injection de fautes 17

2.2.3 Attaques sur les périphérique et interfaces 18

2.3 Attaques par canaux auxiliaires 20

2.4 Menaces systèmes embarqués et IOT 21

2.4.1 Chaîne d’approvisionnement : du silicium au firmware 21

2.4.2 Vulnérabilités liées au cycle de vie et à la maintenance 21

2.4.3 Failles protocolaires, configuration et attaques sur les ressources 22

3. Architectures de protection matérielle 24

3.1 Principes fondamentaux de défense 24

3.1.1 Racines de confiance matérielles 25

3.1.2 Chaînes de confiance et attestation 25

3.1.3 Isolation et cloisonnement 26

3.2 Technologies de sécurité matérielle pour systèmes x86/x64 27

3.2.1 Secure Boot et UEFI protégé 27

3.2.2 Trusted Platform Module : variantes et vulnérabilités 28

3.3 Solutions pour systèmes embarqués 29

3.3.1 ARM TrustZone / RISC-V PMP 29

5

3.3.2 Secure Elements et enclaves sécurisées 30

3.3.3 Synergie entre Secure Element et enclave 31

3.4 Analyse comparative des solutions 32

4. Le TPM 2.0 comme élément central de protection 34

4.1 Architecture et fonctionnalités du TPM 2.0 34

4.1.1 Composants et opérations fondamentales 34

4.1.2 Modèle de sécurité 36

4.2 Cas d'usage de protection avec TPM 37

4.2.1 Protection de l'intégrité du firmware 37

4.2.2 Attestation de l'état système 38

4.2.3 Scellement de données sensibles 39

4.3 Limites et vulnérabilités connues 41

4.3.1 Faiblesses d'implémentation 41

4.3.2 Contournements pratiques 42

4.4 Synthèse critique des forces et faiblesses du TPM 2.0 43

4.4.1 Forces du TPM 2.0: contextes d'efficacité 43

4.4.2 Faiblesses du TPM 2.0: scénarios de vulnérabilité 44

6. Conclusion 46

7. Glossaire 48

8. Référence 50

6

Liste des figures

Figure 1 - Flux du processus de démarrage système et cibles potentielles d'attaques 12

Figure 2 - Démarrage UEFI standard de Windows vs séquence de démarrage modifiée par

ESPecter 15

Figure 3 - Surface d'attaque IOT 23

Figure 4 - La vision de ARM sur l’isolation et le cloisonnement 26

Figure 5 - Architecture interne d'un TPM 2.0 35

Figure 6 - Diagramme d'attestation avec le TPM : Flux de communication entre le système attesté

(Attestor) et le vérificateur (Verifier) montrant les étapes de challenge, signature et vérification

 39

Figure 7 - Processus de scellement/descellement TPM - (a) Création d'un objet scellé avec une

politique d'autorisation - (b) Descellement conditionnel des données après vérification de la

politique et de l'état du système 40

7

Introduction

1. Introduction

1.1 Contexte et motivations

La sécurité des systèmes informatiques a longtemps été abordée principalement comme

une problématique logicielle, où les mécanismes de protection s'appuient essentiellement

sur les couches supérieures (applications, systèmes d'exploitation). Cette approche, bien

qu’ayant démontré son efficacité pour contrer certaines catégories de menaces, elle

révèle aujourd'hui ses limites face à l'évolution rapide et continue des cyberattaques, qui

ciblent désormais les couches les plus profondes des systèmes. L'ENISA (European

Union Agency for Cybersecurity) a souligné dans ses rapports annuels sur les menaces

du monde de la cybersécurité, cette évolution vers des attaques plus sophistiquées visant

les couches basses des systèmes [ENISA 2023].

Longtemps ignorées ou sous-estimées, les firmwares, interfaces critiques situées entre

le matériel et le logiciel, constitue un vecteur d'attaque privilégié par les acteurs

malveillants. Un firmware compromis offre aux attaquants un contrôle quasi-complet du

système, avec une capacité d’attaque où les mécanismes de protection logiciels et les

tentatives de suppression standard sont inefficaces. Des cas emblématiques comme celui

du rootkit UEFI (Unified Extensible Firmware Interface) LoJax, documenté par les

chercheurs d'ESET en 2018, ont démontré la faisabilité d'implants malveillants persistants

capables de survivre aux réinstallations complètes du système d'exploitation [ESET

2018]. Cette menace s'avère particulièrement critique pour les systèmes embarqués qui,

soumis à des contraintes strictes en matière d'énergie et de ressources, se trouvent

fréquemment dépourvus de protections contre ces attaques de bas niveau.

Face à ce changement notable du paysage des menaces informatiques, la sécurité

matérielle émerge comme un impératif stratégique incontournable. L'approche dite de

sécurité par conception (« Security by Design »), intégrant des mécanismes de

protections matériels et logiciels, devenant essentielle pour établir une racine de

confiance (« Root of Trust ») capable de garantir l’intégrité et la résilience globale du

système. Le NIST (National Institute of Standards and Technology) a formalisé cette

approche dans sa publication 800-193 « Platform Firmware Resiliency Guidelines » [NIST

2018]. Ce document fournit des recommandations techniques pour renforcer la résilience

du firmware contre les attaques potentiellement destructrices. Dans le même esprit,

L'Agence Nationale de Sécurité des Systèmes d'Information (ANSSI) a publié ses

recommandations relatives à la sécurité matérielle sur plateformes x86 [ANSSI 2019]. Ce

8

guide présente des exigences de sécurité s'appliquant aux dispositifs matériels,

préconisant notamment l'implémentation systématique d'un TPM (Trusted Platform

Module) version 2.0, la configuration du BIOS/UEFI en mode Secure Boot, ainsi que le

déploiement de mécanismes avancés de journalisation et d'audit du firmware.

L'adoption massive du TPM 2.0 (standardisé par la norme internationale ISO/IEC

11889:2015), désormais imposé par Microsoft comme matériel obligatoire pour installer

son dernier système d’exploitation Windows, semble représenter une avancée majeure

dans le domaine de la sécurité matérielle.

1.2 Problématique et objectifs

1.2.1 Problématique

La multiplication des attaques de bas niveau visant le firmware, qu’il s’agisse du

Basic Input Output System (BIOS) historique ou, plus récemment, de l’UEFI, remet en

cause l’hypothèse présupposé d’un matériel implicitement fiable. La vérification d'intégrité

de ce code de bas niveau doit pouvoir s’appuyer sur un composant, créant ainsi une

première vulnérabilité structurelle.

Cette problématique s'accentue lorsqu'on compare les systèmes généralistes aux

architectures embarquées. Les premiers, dominés par l'écosystème x86/64, bénéficient

de ressources matérielles conséquentes permettant l'intégration de mécanismes de

protection (virtualisation matérielle, environnement d’exécution isolée). À l'inverse, les

dispositifs embarqués (IoT, objets connectés) fondés principalement sur des architectures

ARM ou RISC-V doivent concilier sécurité et contraintes strictes (consommation

énergétique, mémoire limitée, et l’environnement où le système est utilisé). Ces

différences imposent des stratégies de protection différentes, adaptées aux spécificités

et aux limitations propres à chaque plateforme.

Le TPM 2.0 se présente comme un composant pivot pour ancrer la confiance, assurant

une attestation de l’état système actuelle. Cependant, ses différentes formes, TPM discret

(dTPM), TPM firmware (fTPM), TPM virtuel (vTPM), introduisent chacune des hypothèses

de menace différentes : le dTPM, bien qu'isolé physiquement, expose une surface

d'attaque matérielle via ses bus de communication (ex. interception de signaux sur puce),

tandis que les implémentations logicielles (vTPM) soulèvent des questions

fondamentales quant à leur isolation. Ces différentes implémentations et leurs

implications sécuritaires seront analysées en détail dans la section 3.2.2.

1.2.2 Objectifs

Compte tenu de la complexité croissante des attaques bas niveau sur les firmwares et

les architectures matérielles, ce mémoire se concentre sur une analyse approfondie des

vulnérabilités associées et des mécanismes de défense qui en découlent.

Le premier objectif vise à dresser un panorama détaillé des vulnérabilités spécifiques aux

firmwares et aux composants matériels des plateformes conventionnelles (x86/x64) et

des systèmes embarqués (ARM, RISC-V). Cette démarche analytique permettra

9

d'identifier précisément les vecteurs d'attaque privilégiés selon les spécificités

architecturales. Seront particulièrement étudiées les attaques ciblant l'intégrité du

firmware (notamment via l'UEFI), les injections de fautes matérielles, les exploitations des

interfaces critiques (DMA, JTAG, SPI) et les attaques par canaux auxiliaires (side-

channel).

Le second objectif, central à notre analyse, concerne l'évaluation critique du TPM 2.0 en

tant qu'élément fondamental de protection des systèmes modernes. Nous comparerons

les différentes variantes d'implémentation du TPM (dTPM, fTPM, vTPM) en examinant

leur efficacité face aux vecteurs d’attaques identifiés précédemment. Cette comparaison

reposera sur une analyse détaillée des spécifications techniques publiées par le Trusted

Computing Group et des vulnérabilités récentes documentées, notamment les failles

cryptographiques, les attaques temporelles et les faiblesses d'implémentation spécifiques

révélées par la communauté scientifique. Une attention particulière sera portée aux

contraintes techniques et opérationnelles propres à chaque type de plateforme,

permettant ainsi d’établir un cadre comparatif, visant à déterminer la pertinence des

différentes implémentations du TPM.

Enfin, à titre exploratoire, ce mémoire propose une réflexion sur les architectures de

sécurité matérielle. En s’appuyant sur les principes fondamentaux des racines de

confiance matérielles et des enclaves sécurisées, nous examinerons les possibilités

offertes par l’intégration synergique de ces technologies au sein d'architectures hybrides.

10

État de l’art des menaces
matérielles et firmware

2. État de l’art des menaces matérielles et

firmware

2.1 Attaques sur le firmware

Le firmware désigne un programme intégré directement dans un composant électronique

(processeur, microcontrôleur, puce dédiée, périphérique) qui contrôle son fonctionnement

fondamental et persiste généralement pendant toute la durée de vie du matériel.

Contrairement aux logiciels traditionnels, il n'est pas destiné à être modifié fréquemment

et fonctionne à l'interface directe entre matériel et logiciel. Cette section présente les

principales menaces ciblant les couches basses des systèmes informatique, qui peuvent

être classé en fonction des cibles qu’elles vissent.

Dans le contexte spécifique du démarrage système que nous analysons ici, le firmware

UEFI/BIOS constitue la première séquence de code exécutée lors de l'initialisation d'un

ordinateur.

2.1.1 Attaques sur l'UEFI/BIOS

L'UEFI et le BIOS constituent l'interface fondamentale entre le matériel informatique et le

système d'exploitation. Bien que l'UEFI soit souvent présenté comme le successeur du

BIOS, il est important de noter que l'UEFI moderne intègre généralement un mode de

compatibilité (mode legacy) permettant d'émuler le fonctionnement d'un BIOS traditionnel

pour assurer la rétrocompatibilité avec les systèmes d'exploitation plus anciens. Leurs

rôles dans l’initialisation du matériel et le transfert du contrôle au noyau OS en fait des

composants critique dans la chaîne de confiance du système.

Le BIOS (Basic Input/Output System), développé au début des années 1980, reposait sur

une architecture limitée en mode réel 16 bits. Le mode réel 16 bits, dans lequel opérait

initialement le BIOS, offrait un accès direct à la mémoire et aux périphériques. La

limitation à 1 Mo d'espace adressable n'était pas intrinsèque au BIOS lui-même, mais

résultait de l'architecture des premiers processeurs x86 et des contraintes de

rétrocompatibilité maintenues au fil des évolutions. En réalité, même en environnement

BIOS, le processeur pouvait basculer en mode ou en mode long (à partir des architectures

11

x86-64), permettant l'accès à davantage de mémoire et l'activation de mécanismes de

protection. Cependant, la structure unifiée et rigide du BIOS traditionnel limitait

effectivement sa modularité comparée à l'UEFI.

Le démarrage BIOS, commence par un Power-On Reset (POR) puis un POST (Power-

On Self-Test) qui vérifie et initialise le processeur, la RAM et les périphériques (contrôleurs

de clavier, affichage, …).

Le processus POST comprend plusieurs étapes techniques :

• Vérification : Test diagnostique des composants critiques (CPU, mémoire,

contrôleurs), détection d'erreurs matérielles via des routines de test

standardisées, et validation de l'intégrité des ressources système (sommes de

contrôle).

• Initialisation : Configuration des registres CPU aux valeurs par défaut,

établissement des tables d'interruption, configuration initiale des contrôleurs

(chipset, DMA, PIC), et amorçage des sous-systèmes mémoire avec leurs

paramètres fondamentaux.

Ce processus établit l'environnement de base nécessaire au chargement et à l'exécution

des composants logiciels de plus haut niveau.

Le BIOS configure ensuite le matériel, construit sa table de périphériques et expose des

services via des interruptions. Il recherche enfin le Master Boot Record sur le premier

périphérique de démarrage configuré, charge ce secteur en mémoire et lui transfère

l’exécution.

À partir de 2005, le standard UEFI (Unified Extensible Firmware Interface) a introduit une

refonte complète du micrologiciel d’amorçage, structurée autour d’une architecture

modulaire et avec l’ajout de mécanismes de sécurité :

• Un environnement d'exécution en mode protégé (32 bits) ou long (64 bits),

permettant l'accès à toute la mémoire, ainsi que de la protection mémoire

• Une architecture modulaire basée sur des pilotes et applications indépendants

• Une partition système dédiée (ESP - EFI System Partition) pour stocker les

chargeurs d’amorçage, garantissant une séparation entre firmware et système

d’exploitation

• Prise en charge native de protocoles réseau

• Des mécanismes de sécurité comme le Secure Boot

Le processus de démarrage UEFI suit plusieurs phases séquentielles distinctes :

1. SEC (Security) : Phase initiale vérification de l'authenticité du firmware

2. PEI (Pre-EFI Initialization) : Initialisation minimale du matériel

3. DXE (Driver Execution Environment) : Chargement des pilotes principaux

4. BDS (Boot Device Selection) : Sélection du périphérique de démarrage

5. TSL (Transient System Load) : Chargement du système d'exploitation

Ces nouvelles caractéristiques architecturales, tout en apportant des améliorations

fonctionnelles significatives, modifient indirectement la surface d'attaque. La Figure 1

12

illustre le flux du processus de démarrage et les points d'intervention potentiels pour les

attaquants.

Figure 1 - Flux du processus de démarrage système et cibles potentielles d'attaques (source :
Rootkits and Bootkits – p58)

Ainsi, cette modernisation a paradoxalement introduit de nouveaux vecteurs d'attaque,

qui peuvent être catégorisé selon plusieurs approches.

La modification directe de la mémoire flash SPI (Serial Peripheral Interface) constitue

l'approche la plus fondamentale pour compromettre le firmware. La puce flash SPI,

généralement soudée directement sur la carte mère à proximité du chipset, stocke

l'intégralité du code UEFI/BIOS et constitue donc une cible privilégiée. Cette puce SPI

contient généralement 8-16 Mo de mémoire flash organisée en régions distinctes

(descripteur, ME, BIOS) avec différents niveaux de protection.

L'attaquant doit [Xeno] :

1. Élever ses privilèges pour obtenir un accès kernel/ring-0

2. Désactiver le bit BIOSWE (BIOS Write Enable) dans le registre BIOS_CNTL

3. Neutraliser la protection BLE (BIOS Lock Enable)

4. Manipuler les registres Protected Range (PR0-PR4) pour autoriser l'écriture

5. Utiliser des opérations d'E/S directes pour écrire le code malveillant

Comme on peut le voir sur le chemin d’attaque, des protections sont implémentées par

les fabricants, que l'attaquant doit franchir successivement [Xeno] :

• Le verrouillage logiciel du BIOS via son interface de configuration

• Les bits de protection du registre BIOS_CNTL, contrôlés par le chipset, qui

empêchent les écritures non autorisées sur la puce flash

• Les mécanismes de protection en écriture du SPI lui-même, notamment le

registre de statut FLOCKDN (Flash Configuration Lock-Down) qui, une fois

activé, bloque toute modification des registres de configuration jusqu'au prochain

redémarrage matériel

• La restriction d'accès aux plages d'adresses SPI via les registres Protected

Range (PR0-PR4) qui définissent des régions en lecture seule

13

L'UEFI, contrairement au BIOS, adopte une conception modulaire où différents

composants fonctionnels sont implémentés sous forme de pilotes et modules distincts.

Cette architecture s'apparente à un mini-système d'exploitation temps réel, avec ses

propres protocoles de communication inter-modules, ses services système et son modèle

de pilotes extensible. Alors que le BIOS traditionnel se présente comme un unique bloc

de code enchaînant toutes ses instructions de manière strictement linéaire, l'UEFI opère

plus comme un environnement d'exécution complet, capable de charger dynamiquement

des modules, d'exposer des interfaces de programmation (API) standardisées, et de

maintenir un état cohérent entre ses différents composants.

Cette modularité, bien qu'avantageuse pour la maintenance et l'évolutivité, élargit la

surface d'attaque en multipliant les points d'intervention potentiels. Les attaquants

peuvent cibler des modules spécifiques, particulièrement ceux exécutés en phase DXE,

qui offrent un contexte d'exécution privilégié et constituent un point d'entrée vers les

couches inférieures du système.

Une troisième catégorie d'attaques cible spécifiquement plus largement la manipulation

de l’ensemble des variables d’environnement de l’UEFI. Ces variables, stockées dans

une mémoire non volatile (NVRAM) accessible au firmware, configurent divers aspects

du comportement du système durant et après la séquence d'amorçage. Leur modification

peut altérer fondamentalement la trajectoire d'exécution du système sans nécessiter la

modification directe du code firmware, en modifiant par exemple les variables contrôlant

l'ordre de démarrage ou en désactivant sélectivement des mécanismes de sécurité.

Le cas LoJax, documenté par ESET en 2018 [ESET 2018], représente la première

documentation publique d'un rootkit UEFI déployé dans des opérations offensives réelles.

Cette opération, attribuée au groupe APT28 (également connu sous les noms Fancy Bear

ou Sednit), illustre parfaitement le commencement des attaques ciblant le firmware UEFI.

L'attaque exploitait une fonctionnalité présente dans l’UEFI : LoJack, un logiciel antivol

préinstallé par de nombreux fabricants d’ordinateur portable.

Le processus d'infection se déroulait de cette manière :

1. Déploiement initial via des documents malveillants (typiquement des fichiers Word

avec macros malveillantes) ciblant le système d'exploitation Windows de la victime,

permettant l'installation un logiciel malveillant initial avec des privilèges utilisateur

standard, servant de point d'entrée pour les étapes suivantes de l'attaque

2. Élévation des privilèges via l'exploitation de vulnérabilités système (comme CVE-

2018-8120) pour obtenir des droits SYSTEM nécessaires aux opérations de bas

niveau

3. Utilisation d'un pilote signé légitime mais détourné, nommé « RwDrv.sys » (issu de

l'outil RWEverything), pour accéder directement aux registres matériels et à la

mémoire SPI

4. Contournement des protections en écriture du firmware en manipulant les registres

de contrôle du SPI, notamment en désactivant le bit BIOSWE (BIOS Write Enable) et

en neutralisant la protection BIOS Lock Enable (BLE)

14

5. Installation d'un pilote UEFI malveillant directement dans la mémoire flash SPI, en

ciblant spécifiquement la phase DXE (Driver Execution Environment) de l'UEFI pour

garantir son chargement à chaque démarrage

6. Configuration d'un mécanisme garantissant le chargement d'un agent malveillant lors

du démarrage du système d'exploitation via l'ajout d'entrées dans les variables UEFI

persistantes

La persistance de cet implant s'explique par sa localisation dans la mémoire flash SPI

physique, distincte et indépendante des supports de stockage de masse (disques durs,

SSD) où réside le système d'exploitation. Contrairement aux malwares traditionnels

stockés sur le disque système, un rootkit UEFI comme LoJax réside dans une puce

dédiée sur la carte mère elle-même, expliquant pourquoi même le remplacement du

disque dur ne permet pas d'éliminer l'infection. Seule une reprogrammation complète de

la mémoire flash SPI (reflashage) peut éradiquer ce type d'implant.

2.1.2 Bootkits

Les bootkits représentent une classe de logiciels malveillants qui infectent les premières

phases du processus de démarrage système, avant même que le système d'exploitation

ne soit complètement chargé. Comme l'explique Matrosov, ces attaques ont connu une

évolution significative passant des premiers virus de secteur d'amorçage (Boot Sector

Infectors - BSI) aux attaques ciblant aujourd’hui les environnements UEFI. [Matrosov

2019]

Les origines de ces attaques remontent au développement des systèmes informatiques

pré-IBM PC. Le programme Creeper (1971), considéré comme le premier logiciel

autoréplicatif opérant en mode noyau, est souvent cité comme l'ancêtre des bootkits

modernes. Les premières générations, telles que le PoC eEye BootRoot, présenté au

Black Hat en 2005, se concentraient sur la compromission du Master Boot Record (MBR),

exploitant sa position centrale dans l'architecture x86 pour persister hors de portée des

mécanismes de détection du système d'exploitation.

Les bootkits ont connu une évolution parallèlement à l'architecture de démarrage des

systèmes. Les bootkits MBR, première génération, modifient les 512 premiers octets du

disque et détournent le flux de contrôle vers un code malveillant stocké dans des secteurs

cachés. Les bootkits VBR (Volume Boot Record) constituent la deuxième génération,

particulièrement efficaces contre les systèmes multi-volumes en ciblant le secteur

d'amorçage de chaque partition. Avec l'avènement de l'UEFI, les bootkits comme

ESPecter manipulent désormais la partition système EFI (ESP) en remplaçant ou en

interceptant le bootloader légitime. La dernière génération, représentée par les bootkits

anti-Secure Boot, exploite des vulnérabilités spécifiques comme CVE-2022-21894 pour

contourner les vérifications cryptographiques de signature, fondement même de la

protection Secure Boot.

Ces stratégies d’attaques peuvent être classifiées en quatre groupes distincts :

• Instrumentalisation des mécanismes légitimes : utilisation des fonctionnalités

intégrées au système d’exploitation (ex. désactivation temporaire de la

15

vérification de signature via des commandes spécifiques), souvent en exploitant

des vulnérabilités dans les outils de diagnostic ou de test.

• Exploitation de failles système : ciblage de vulnérabilités critiques dans le noyau

ou dans des pilotes signés, permettant l'exécution arbitraire de code non

authentifié.

• Attaques sur le chargeur d'amorçage : modification du bootloader pour modifier

le noyau et désactiver les vérifications de sécurité avant leur initialisation.

• Infection du firmware

Figure 2 - Démarrage UEFI standard de Windows vs séquence de démarrage modifiée par
ESPecter (https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-

windows-devices-since-2012/)

En 2023, le bootkit BlackLotus est apparu comme le premier bootkit UEFI capable de

contourner la protection Secure Boot sur des systèmes Windows entièrement à jour,

exploitant une vulnérabilité connue (CVE-2022-21894) pour s'installer. BlackLotus

fonctionne en exploitant une vulnérabilité dans le processus de démarrage Windows pour

charger des fichiers DLLs et EXEs non signés malgré Secure Boot. Il utilise une technique

de "bootkit remapping" qui intercepte les appels systèmes au niveau du bootloader avant

que les mécanismes de protection de l'OS ne soient actifs.

Plus récemment, en 2024, la découverte de Bootkitty, le premier bootkit UEFI ciblant

spécifiquement les systèmes Linux, marquant ainsi l'extension de cette menace au-delà

de l'écosystème Windows.

https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/
https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/

16

2.2 Attaques sur les composants matériels

Les composants matériels des systèmes informatiques constituent un vecteur d'attaque

fondamental pour les acteurs malveillants cherchant à compromettre la sécurité des

systèmes. Contrairement aux vulnérabilités purement logicielles qui peuvent être

corrigées par des mises à jour de firmware ou de système d'exploitation, les failles

fondamentales dans l'architecture matérielle elle-même (comme les défauts de

conception des circuits intégrés) demeurent généralement exploitables pendant toute la

durée de vie du composant. Ces vulnérabilités, telles que Spectre, Meltdown ou

Rowhammer, ne peuvent être véritablement éliminées que par une refonte du silicium et

un remplacement physique des composants affectés. Les correctifs logiciels déployés

pour ces problèmes architecturaux offrent généralement des atténuations qui réduisent

l'exploitabilité mais entraînent souvent des compromis significatifs en termes de

performance et ne suppriment pas la vulnérabilité.

2.2.1 Attaque sur la mémoire

Les attaques ciblant les sous-systèmes mémoire exploitent les caractéristiques

physiques et architecturales des différents types de mémoire pour compromettre la

confidentialité, l'intégrité ou la disponibilité des données. Ces attaques peuvent être

classifiées en deux catégories principales : les attaques par perturbation physique et les

attaques spéculatives.

L'attaque Rowhammer, documentée par [Kim 2014], constitue l'exemple emblématique

des attaques par perturbation physique. Cette technique exploite une vulnérabilité

fondamentale des mémoires DRAM (Dynamic Random Access Memory). L'attaquant

identifie d'abord des paires de lignes mémoire physiquement adjacentes, appelées

"aggressor rows". Il accède ensuite répétitivement et alternativement à ces lignes,

souvent plus de 100 000 fois par seconde, créant des perturbations électriques par

interférence. Ces perturbations déchargent prématurément les condensateurs des

cellules de la ligne victime située entre les deux lignes agresseurs. Les bits basculent

lorsque la charge des condensateurs tombe sous le seuil de détection, modifiant ainsi les

données stockées, tout cela sans avoir accès à ces cellules. L'impact peut être

dévastateur : modification des tables de pages mémoire, corruption des structures de

contrôle du noyau ou altération des bits de privilège dans les descripteurs de sécurité.

Face à cette menace, les fabricants de puces mémoire ont introduit des mécanismes

d'atténuation, notamment le Target Row Refresh (TRR), conçu pour détecter et prévenir

les modèles d'accès caractéristiques d'une attaque Rowhammer. Cependant, l'évolution

de ces contre-mesures a été suivie par le développement de techniques d'attaque plus

sophistiquées, comme TRRespass, Frigo a démontré la capacité à contourner ces

protections en employant des modèles d'accès plus complexes et distribués, établissant

que les implémentations de TRR étaient vulnérables à des « many-sided hammering

patterns » (schémas d'accès multidirectionnels qui ciblent simultanément plusieurs lignes

de mémoire adjacentes [Frigo 2020]. Jattke a affiné cette approche en développant un

algorithme capable de découvrir automatiquement des modèles d'accès mémoire

17

efficaces pour déclencher des bit flips, contournant ainsi pratiquement toutes les

implémentations TRR existantes [Jattke 2022].

Les attaques spéculatives exploitent les optimisations architecturales des processeurs

modernes pour extraire des informations sensibles.

Meltdown et Spectre ont révélé en 2018 et 2019 comment l'exécution spéculative et le

réordonnancement des instructions pouvaient être exploités pour contourner les

frontières de sécurité et accéder à des données privilégiées. Ces attaques exploitent les

mécanismes d'optimisation des processeurs en ciblant l'exécution spéculative, c’est

quand le processeur exécute par anticipation des instructions qui pourraient être

nécessaires (par ex : réordonnancement des instructions). Meltdown exploite

spécifiquement le fait que la vérification des privilèges est effectuée après l'exécution

spéculative des instructions. Cette fenêtre temporelle, bien que minuscule (quelques

nanosecondes), suffit pour créer des effets secondaires mesurables sur le cache,

notamment des variations de temps d'accès. Ces variations permettent l'extraction

d'informations sensibles à travers un canal auxiliaire basé sur les timings d'accès au

cache, contournant ainsi les protections d'isolation mémoire les plus fondamentales du

système. [Meltdown 2018] [Spectre 2019]

En 2024, l'attaque micro-architecturale Indirector a affecté les processeurs Intel de 13ᵉ et

14ᵉ générations, révélant comment des entiers spéculatifs pouvaient être exploités pour

extraire des secrets à travers le cache [Bitdefender 2024].

2.2.2 Attaques par injection de fautes

L’injection de fautes consiste à perturber, de manière contrôlée, la tension, l’horloge ou

l’environnement physique du composant pour forcer des dérives de calcul.

La manipulation de la tension d'alimentation représente une première approche, où

l'introduction de variations rapides ou de « glitches » peut perturber le fonctionnement

normal des circuits, induisant des erreurs de calcul ce qui peut aboutir à des

contournements de vérification de sécurité. Cette technique exploite la sensibilité des

semi-conducteurs aux fluctuations de tension, particulièrement durant les opérations

critiques comme l'exécution d'algorithmes cryptographiques ou de vérifications

d'authentification.

Un exemple particulièrement significatif est la technique VGlitch documentée par

Jerinsunny [Jerinsunny 2024], démontrant la vulnérabilité des microcontrôleurs STM32

aux attaques par tension. Cette recherche a révélé qu'en appliquant des impulsions de

tension précis et synchronisées, il était possible de contourner les mécanismes de

protection de la mémoire (PMP) et d'exécuter du code non autorisé, compromettant ainsi

l'intégrité du système. Ces perturbations provoquent des erreurs dans l'exécution des

instructions, comme la transformation d'une instruction de branchement conditionnel

(BEQ - Branch if EQual, qui n'exécute le saut que si la condition d'égalité est remplie) en

branchement inconditionnel (comme JMP - Jump, qui exécute toujours le saut sans

vérifier aucune condition), ce qui permet de sauter des vérifications cruciales. Pour

réaliser cette attaque, un générateur d'impulsions programmable et une sonde de tension

18

haute précision sont utilisés pour injecter des transitoires de tension de quelques

nanosecondes à des moments précis du cycle d'horloge. La précision temporelle et

l'amplitude de ces glitches sont calibrées pour affecter spécifiquement certaines portes

logiques sans déclencher les détecteurs de sous-tension ou provoquer une réinitialisation

complète du système.

Les perturbations électromagnétiques constituent une seconde approche, où l'application

ciblée de champs électromagnétiques localisés peut induire des courants parasites dans

les circuits, perturbant ainsi leur fonctionnement normal. Cette méthode présente

l'avantage significatif de pouvoir être implémentée sans contact physique direct avec le

composant ciblé, augmentant ainsi sa discrétion et réduisant les traces forensiques. La

technique EMFI (Electromagnetic Fault Injection) a évolué en conséquence, avec le

développement d'injecteurs de fautes électromagnétiques de haute précision capables

de cibler des zones spécifiques d'un circuit intégré. Les courants induits peuvent modifier

l'état des transistors pendant quelques nanosecondes, suffisamment pour transformer un

« 0 » en « 1 » dans un registre critique ou inverser une condition d'authentification. Une

étude a démontré l’efficacité de l’EMFI contre des implémentations matérielles

d’algorithmes cryptographiques : Dehbaoui a montré qu’une impulsion EMFI pouvait

provoquer des fautes exploitables par analyse différentielle pour extraire la clé d’un AES.

[Dehbaoui 2012]

Les attaques par injection de fautes peuvent avoir différents effets, tel que le « saut

instruction », c’est-à-dire qu’on va forcer le processeur à sauter des instructions qu’il

devait normalement exécuter, ce qui provoquera une possible corruption des données ou

alors de changer le flux d’exécution pour le détourner vers un code malveillant.

2.2.3 Attaques sur les périphérique et interfaces

Les périphériques et interfaces matérielles constituent des vecteurs d'attaque dans

l'architecture système, exploitant les privilèges élevés accordés à certaines interfaces

permettant de contourner les mécanismes de protection du système d'exploitation car

opérant souvent à un niveau de privilège supérieur aux défenses logicielles.

Dans les systèmes x86, l'interface SPI est utilisée pour stocker le firmware UEFI/BIOS.

Comme nous l’avons vu précédemment, celles-ci peuvent être utilisé pour l’installation de

bootkits persistants et ainsi compromettre le système au plus bas niveau.

Les attaques DMA (Direct Memory Access), exploitant les interfaces offrant un accès

direct à la mémoire physique (comme Thunderbolt, PCIe ou FireWire). Ces interfaces

sont conçues pour optimiser les performances en permettant aux périphériques de

communiquer directement avec la mémoire système sans intervention du processeur. Un

périphérique peut théoriquement utiliser ces capacités DMA pour lire ou écrire

arbitrairement dans la mémoire système, contournant ainsi les mécanismes de protection

implémentés au niveau du système d'exploitation.

Des attaques comme Thunderspy ont démontré comment les interfaces Thunderbolt

pouvaient être exploitées pour contourner complètement les protections du système

d'exploitation et accéder aux données chiffrées, même sur un système verrouillé ou en

19

veille. Comme il est conclu dans l’article, « par un accès physique de seulement cinq

minutes au dispositif, un attaquant peut extraire les données de périphériques Windows

ou Linux équipés de ports Thunderbolt » [Thunderbolt 2020]. L'interface Thunderbolt offre

un accès DMA avec une bande passante de 40 Gbps, permettant théoriquement aux

périphériques connectés de lire et d'écrire directement dans la mémoire système. Bien

que les contrôleurs IOMMU (Input–output memory management unit) (ex : Intel VT-

d/AMD-Vi) soient censés restreindre ces accès DMA, l'attaque Thunderspy contourne ces

protections en reprogrammant le firmware du contrôleur Thunderbolt. Cette

reprogrammation s'effectue par extraction et modification du firmware, désactivant les

restrictions de sécurité au niveau matériel. L'attaque exploite également les fenêtres de

vulnérabilité qui apparaissent pendant la phase d'initialisation du système, avant que

toutes les protections ne soient actives. Une fois ces barrières contournées, l'attaquant

peut lire et écrire directement dans la mémoire système, contournant toutes les

protections logicielles du système d'exploitation, y compris le chiffrement de disque,

puisque les clés déchiffrées résident en mémoire pendant l'utilisation.

L'exploitation des microcontrôleurs périphériques constitue un second vecteur. Les

périphériques (cartes graphiques, carte réseau, disques SSD, …) intègrent leurs propres

processeurs exécutant un firmware dédié, opérant très souvent avec des privilèges

élevés et un accès direct aux ressources système. Les contrôleurs BMC (Baseboard

Management Controller) présents dans les serveurs d'entreprise illustrent

particulièrement cette menace. Le BMC est un microcontrôleur spécialisé intégré à la

carte mère des serveurs, qui fonctionne indépendamment du système d'exploitation

principal et du processeur hôte, il permet aux administrateurs de gérer à distance

l'ensemble des fonctions du serveur. En 2023, Eclypsium a révélé deux vulnérabilités

critiques (CVE-2023-34329 et CVE-2023-34330) dans le firmware BMC MegaRAC, utilisé

par de nombreux fournisseurs (HP, Dell, …), ces vulnérabilités permettaient l'exécution

de code arbitraire avec des privilèges root matériel, sans authentification préalable.

[Eclypsium 2023]

Les attaques ciblant les bus de communication système, comme I2C, SPI ou JTAG,

constituent un autre vecteur. Insuffisamment protégées lors de la production matérielle,

ces interfaces, initialement conçues pour le débogage, la configuration ou la

programmation des composants matériels, peuvent être exploitées pour accéder à des

fonctionnalités privilégiées. Accessibles via des points de test sur le circuit imprimé, elles

offrent un accès direct à la mémoire et aux registres processeur permettant :

• La lecture et l’écriture du firmware en clair

• Le contournement de toute authentification logicielle

• L’injection de fautes ciblées (glitching) pour sauter une étape de vérification.

Après avoir abordé les attaques ciblant directement les composants matériels, il est

essentiel d'examiner une autre catégorie d'attaques qui, bien que ne nécessitant pas un

accès physique direct au matériel, exploitent néanmoins les caractéristiques physiques

ou temporelles des composants pour compromettre leur sécurité : les attaques par

canaux auxiliaires.

20

2.3 Attaques par canaux auxiliaires

Les attaques par canaux auxiliaires exploitent des fuites physiques ou temporelles émises

par un dispositif lors de ses opérations cryptographiques afin de récupérer des clés ou

des données sensibles. Plutôt que de s’appuyer sur une vulnérabilité logique du firmware

ou du système d’exploitation, ces attaques mesurent et analysent des caractéristiques

telles que le temps d’exécution, la consommation électrique ou encore les émissions

électromagnétiques. Cette menace, peut être menées à distance (via des sondes) ou

localement.

Les attaques par canaux auxiliaires peuvent être classifiées selon plusieurs dimensions :

le canal exploité, la méthode d'analyse, et la proximité requise avec le dispositif cible.

L’attaque basées sur la consommation d’énergie est basée sur deux principales

techniques

1. SPA (Simple Power Analysis) : cette technique examine directement les variations de

consommation électrique pendant l'exécution d'opérations cryptographiques pour

identifier des motifs correspondant à des opérations spécifiques. Par exemple, dans

une implémentation naïve de RSA, la différence de consommation entre une

opération de multiplication et une opération de carré peut révéler directement les bits

de la clé privée. La SPA nécessite généralement peu d’échantillons mais requiert une

connaissance approfondie de l'algorithme ciblé.

2. DPA (Differential Power Analysis) représente une approche plus sophistiquée que la

SPA. Cette technique exploite des méthodes statistiques appliquées à de multiples

traces de consommation électrique pour extraire les informations relatives aux clés

cryptographiques. Sa robustesse lui permet de rester efficace même en présence

d'un bruit de mesure significatif ou lorsque des contre-mesures élémentaires ont été

implémentées dans le dispositif ciblé.

Au-delà de la consommation électrique, les circuits intégrés émettent des ondes

électromagnétiques proportionnelles à l'activité des transistors. En plaçant une antenne

ou une sonde près du composant, l'attaquant enregistre ces émissions et, via des

traitements spectrogrammes, identifie des patterns corrélés aux opérations

cryptographiques. Les attaques SEMA (Simple Electromagnetic Analysis) et DEMA

(Differential Electromagnetic Analysis) suivent des principes similaires à leurs

homologues basées sur la consommation d'énergie, mais présentent un avantage

significatif, elles peuvent être réalisées à distance, sans contact direct avec le circuit.

Les attaques temporelles consistent à mesurer la durée d’exécution d’opérations

cryptographiques et à en déduire des informations sur la clé secrète. Chaque instruction

ou branche conditionnelle peut présenter un temps d’exécution variable selon les bits

traités, en accumulant suffisamment de mesures, un attaquant peut reconstituer

l’ensemble de la clé [Kocher 1996]. Ces attaques restent d’actualité, notamment contre

les implémentations TLS sur serveurs cloud, avec le “cache timing” [Bitdefender 2024].

D'autres variantes comme les attaques par cache (Cache-timing, Flush+Reload,

Prime+Probe) exploitent le partage des caches entre processus pour inférer des

informations sensibles à partir des schémas d'accès mémoire.

21

D'autres canaux physiques peuvent également être exploités :

• Attaques acoustiques : Analyser le son émis par un clavier pour déterminer les

touches pressées, ou les variations sonores subtiles de certains composants

électroniques pendant des opérations cryptographiques.

• Analyse thermique : Exploiter les variations de température des composants pour

déduire des informations sur les calculs effectués.

2.4 Menaces systèmes embarqués et IOT

Les systèmes embarqués ainsi que les objets de l’internet des objets (IoT), qu’ils

motorisent un véhicule, un dispositif médical ou un capteur industriel, partagent trois

contraintes importantes : des ressources matérielles limitées (CPU, mémoire, énergie),

une connectivité quasi permanente et des cycles de vie variables : relativement courts (3-

5 ans) pour les dispositifs IoT grand public, mais potentiellement très longs (10-15 ans)

pour certains systèmes embarqués industriels ou critiques. Dans les deux cas, ces cycles

de vie sont souvent caractérisés par des mises à jour irrégulières qui créent des fenêtres

de vulnérabilité prolongées. Avec une projection de plus de 75 milliards d’objets

connectes selon le NIST, ces objets deviennent un acteur majeur au niveau de la

sécurisation : 67,3 % des firmwares IoT exploitent aujourd’hui encore des bibliothèques

obsolètes, exposant ainsi de nombreuses applications à des vulnérabilités connues

[AutoFirm 2024]

2.4.1 Chaîne d’approvisionnement : du silicium au firmware

La production d'un objet connecté mobilise souvent un écosystème mondial de sous-

traitants, rendant particulièrement complexe la vérification de l'authenticité et de l'intégrité

des composants (SoC, microcontrôleurs, modules radio). Les rapports d'ENISA signalent

une augmentation préoccupante de la contrefaçon matérielle et de l'insertion de portes

dérobées dès l'usine sous forme de blocs IP malveillants [ENISA 2023]. Avec une

possibilité d'implants matériels (« hardware implants ») dû un contexte géopolitique et

d’espionnage, ces dispositifs microscopiques, détectables uniquement par radiographie

ou microscope électronique, peuvent être insérés lors de la fabrication et de la

distribution.

Comme évoqué § 2.2.3, les ports JTAG demeurent fréquemment actifs sur le produit final,

faute de locking définitif ou d’e-fuses dû à des contrainte de réduction des coûts. Ils

deviennent donc la première cible lors d’une attaque hardware, avec le faible coût des

sondes et des injecteurs de glitch, cela rend cette menace accessible à un très large

éventail d’attaquants. Une étude en 2018 par Vishwakarma recense de nombreux cas

d’exploitation réussie de JTAG sur des dispositifs IoT grand public, notamment pour

extraire des clés cryptographiques ou injecter du code malveillant [Vishwakarma 2018].

2.4.2 Vulnérabilités liées au cycle de vie et à la maintenance

La gestion des mises à jour constitue un autre défi sécuritaire majeur pour ces systèmes.

Si de nombreux dispositifs IoT intègrent des mécanismes de mise à jour over-the-air

22

(OTA), leur implémentation souffre souvent de failles critiques. L'absence de vérification

cryptographique robuste expose ces systèmes à des attaques de type « firmware

poisoning », où un attaquant peut injecter un firmware malveillant via un proxy ou un

serveur de mise à jour compromis.

Cette vulnérabilité est amplifiée par l’abandon des constructeurs, à partir d’un cycle, d’un

support de ses appareils, ainsi les vulnérabilités découvertes demeurent sans correctif.

Cette problématique est particulièrement prononcée dans les contextes industriels, où

des systèmes embarqués critiques qui peuvent rester opérationnels pendant des

décennies, accumulant progressivement une dette de sécurité considérable.

2.4.3 Failles protocolaires, configuration et attaques sur les

ressources

Outre les vulnérabilités matérielles et de firmware, les protocoles de communication IoT

(MQTT, CoAP, HTTP/REST, WebSocket) et les différentes APIs constituent un vecteur

d’attaque privilégié. Par exemple, le protocole MQTT, largement déployé pour sa légèreté,

a révélé 33 vulnérabilités critiques affectant des millions de dispositifs, parmi lesquelles

18 jugées « critical » par Kaspersky [Mitchell 2022].

Dans le contexte des dispositifs IoT grand public, la fragilité sécuritaire se manifeste

également par l’utilisation de configurations par défaut. De nombreux produits sont

déployés avec des identifiants d'accès inchangé, des interfaces de gestion

insuffisamment protégées, ou des services superflus activés par défaut. Les botnets Mirai

et ses dérivés en sont des exemples frappants, ayant exploité ces vulnérabilités pour

orchestrer des attaques distribuées massives.

Les dispositifs modernes implémentent souvent plusieurs protocoles simultanément

(WiFi, Bluetooth, LoRa, ZigBee), chacun présentant son propre modèle de menace. Cette

multiplicité protocolaire crée un environnement propice aux attaques transitives, où la

compromission d'un sous-système peut compromettre l'ensemble du dispositif.

Les attaques par épuisement de batterie constituent une menace particulière aux

systèmes alimentés par pile. Un attaquant peut forcer des transmissions radio répétées

ou des calculs intensifs pour vider prématurément la batterie, une forme de déni de

service particulièrement efficace contre les capteurs déployés dans des zones difficiles

d'accès.

23

Figure 3 - Surface d'attaque IOT (source : https://www.researchgate.net/figure/oT-Attack-
Surface-Areas-Based-on-Miessler-2015_fig2_286440570)

Face à l’ensemble de menaces qui ont été abordés, les approches traditionnelles de

sécurisation s'avèrent souvent inadaptées, nécessitant l'élaboration de défense

spécifiquement conçus pour les contraintes et vulnérabilités uniques des systèmes

embarqués, IoT et x86. Ces architectures de protection, qui seront explorées dans le

chapitre suivant, doivent intégrer simultanément les contraintes matérielles inhérentes à

ces systèmes tout en établissant des fondations sécuritaires robustes adaptées à leur

déploiement dans des environnements potentiellement hostiles.

https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570
https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570

24

Architectures de protection
matérielle

3. Architectures de protection matérielle

3.1 Principes fondamentaux de défense

Dans un contexte où les attaquent ciblant les couches basses (firmware, pilotes,

chargeurs d’amorçage) deviennent de plus en plus sophistiquées, la conception

d’architectures de protection matérielle s’impose comme une exigence critique. Ces

architectures reposent sur quatre piliers fondamentaux :

• Les racines de confiance

• Les chaînes de confiance

• Les mécanismes d’attestation

• Les principes d’isolation et de cloisonnement

Leur combinaison permet d’établir un continuum de sécurité depuis l’amorçage du

système jusqu’aux applications de haut niveau.

• Racine de confiance (Root of Trust) : Selon la norme ISO/IEC 11889:2015, une

racine de confiance désigne « un ensemble de fonctions au sein d'un système de

confiance qui sont toujours implicitement fiables et qui forment la base permettant

d'établir la confiance dans l'ensemble du système ». Le NIST SP 800-193 précise

qu'une RoT doit posséder trois propriétés essentielles : elle doit être

« inaltérable » (immutable), « mesurable de manière fiable » (reliably measured)

et « minimale » pour réduire la surface d'attaque.

• Chaîne de confiance (Chain of Trust) : Définie par le standard GlobalPlatform

TEE System Architecture v1.3 comme une séquence de transferts d'exécution où

chaque étape vérifie cryptographiquement l'intégrité et l'authenticité de l'étape

suivante avant de lui transférer le contrôle, créant ainsi une propagation transitive

de la confiance depuis la racine initiale.

• Mécanismes d’attestation : Ils complètent la chaîne de confiance en fournissant,

à un tiers ou à un hyperviseur, la preuve cryptographique de l’état exact de la

plateforme. En utilisant des valeurs aléatoires uniques (nonces) comme défis

cryptographiques et des signatures générées par des clés d'attestation dédiées,

ils garantissent que le système n'a pas été compromis depuis sa mesure initiale.

25

• Isolation/Cloisonnement : Le NIST IR 8320 caractérise l'isolation comme « la

séparation des domaines d'exécution ou de stockage pour prévenir toute

influence non autorisée entre eux », en distinguant l'isolation spatiale (séparation

des ressources mémoire), temporelle (séparation des cycles d'exécution) et

logique (séparation des privilèges d'accès).

3.1.1 Racines de confiance matérielles

La racine de confiance matérielle (Hardware Root of Trust (HRoT)) constitue le fondement

de toute architecture de sécurité moderne. Selon les recommandations du NIST [NIST

2018], comme dit précédemment, toute RoT doit répondre à au moins trois critères

essentiels : immutabilité, capacité cryptographique, et résistance aux attaques physiques

et logiques.

L’immutabilité s’exprime par la non-modifiabilité des données sensibles après la

fabrication, souvent assurée par des mémoires ROM (Read Only Memory). La capacité

cryptographique inclut la génération de clés asymétriques (RSA, ECC) et le calcul de

fonctions de hachage sécurisées (SHA-256 au moins), tandis que la résistance aux

attaques repose sur la protection des attaques physiques ou des contre-mesures contre

les attaques par canaux auxiliaires.

La littérature distingue plusieurs services de RoT, notamment :

• Root of Trust for Measurement (RTM) : initialise le processus de mesure du code

• Root of Trust for Verification (RTV) : vérifie la validité des blobs mesurés.

• Root of Trust for Storage (RTS) : fournit un stockage sécurisé pour les données

sensibles.

Ces services collaborent en chaîne pour établir une fondation de confiance dès l’allumage

du système.

3.1.2 Chaînes de confiance et attestation

Le concept de chaîne de confiance constitue un fondement architectural critique dans la

sécurité moderne des systèmes informatiques. Il repose sur un principe fondamental :

établir une séquence ininterrompue de validations cryptographiques depuis un ancrage

de confiance initial jusqu'aux couches applicatives.

Cette approche s’articule autour de trois mécanismes, la mesure séquentielle, la

validation cryptographique et le transfert du contrôle après que les précédents

mécanismes ont réussi. C’est la procédure qui est utilisé dans Secure Boot et qui sera

discuté plus en détail dans une prochaine partie.

Dans la mesure séquentielle, chaque composant de la chaîne produit un hash du

composant suivant avant de lui transférer le contrôle d'exécution, stocké dans des

registres protégés contre les modifications.

Deux modèles principaux d'établissement de chaîne de confiance coexistent : La Static

Root of Trust for Measurement (SRTM) initialise la chaîne dès l'allumage du système et

maintient une séquence continue de validations tout au long du processus de démarrage

26

et le Dynamic Root of Trust for Measurement (DRTM) qui permet d'établir une nouvelle

racine de confiance à tout moment pendant l'exécution du système, utile dans les

environnements dynamiques.

L’attestation matérielle permet ensuite de fournir à un tiers (hyperviseur, gestionnaire de

réseau) des preuves cryptographiques de l’état du système, avec l’utilisation d’une clé

d'attestation (Attestation Identity Key), consolidant la confiance tout au long du cycle

3.1.3 Isolation et cloisonnement

Le principe d'isolation vise à compartimenter les ressources du système afin de contenir

les éventuelles compromissions et limiter leur propagation

L'isolation peut être mise en œuvre à différents niveaux :

• Isolation physique : séparation matérielle complète des composants critiques

(ex : Secure Element).

• Isolation par virtualisation : utilisation d'hyperviseurs pour séparer les

environnements d'exécution.

• Isolation par contrôle d'accès mémoire : restriction des accès à certaines zones

mémoire par des mécanismes matériels.

• Isolation temporelle : séparation dans le temps des opérations critiques et non

critiques.

Les architectures ARM TrustZone illustrent cette isolation via deux mondes distincts,

« Secure World » et « Normal World », avec une barrière matérielle empêchant tout accès

non autorisé (sans une authentification préalable) du monde normal au monde sécurisé

Figure 4 - La vision de ARM sur l’isolation et le cloisonnement (source : ARM)

27

Le cloisonnement des privilèges s'appuie sur le principe de moindre privilège (Principle

of Least Privilege), selon lequel chaque composant ne doit disposer que des droits

strictement nécessaires à son fonctionnement, réduisant ainsi la surface d’attaque.

3.2 Technologies de sécurité matérielle pour systèmes

x86/x64

Les architectures de protection matérielle pour plateformes x86/x64 ont considérablement

évolué ces dernières années. Cette section analyse les mécanismes fondamentaux

déployés dans les systèmes modernes pour garantir un niveau de sécurité adéquat

jusqu’au démarrage du système d’exploitation.

3.2.1 Secure Boot et UEFI protégé

Le Secure Boot constitue un mécanisme de protection essentiel établissant une chaîne

de confiance cryptographique durant la séquence d'amorçage. Son implémentation

repose sur une validation systématique des signatures de chaque composant depuis le

firmware initial jusqu'au noyau du système d'exploitation.

Figure 4 - Processus du Secure Boot (source : https://ealtili.medium.com/secure-boot-process-
8b5fa87903f4)

L'architecture de validation s'articule autour d'une hiérarchie de clés :

• Platform Key (PK) : Racine de confiance contrôlant l'accès aux variables UEFI

protégées

• Key Exchange Keys (KEK) : Clés intermédiaires permettant la signature des

certificats d'autorisation

• Bases de données db/dbx : Contenant respectivement les signatures autorisées

et révoquées

https://ealtili.medium.com/secure-boot-process-8b5fa87903f4
https://ealtili.medium.com/secure-boot-process-8b5fa87903f4

28

Cette hiérarchie de confiance implique plusieurs acteurs exerçant des responsabilités, les

fabricants de matériel (OEMs), établissent initialement la Platform Key (PK) lors de la

fabrication du système et l'inscrivent dans la mémoire non volatile. Cette clé représente

l'autorité ultime sur la configuration de sécurité UEFI. Les OEMs préconfigurent

également les KEKs initiales et les entrées des bases db/dbx. Les OS peuvent aussi

fournisent leurs KEKs

Les processeurs modernes intègrent des racines de confiance matérielles

complémentaires au Secure Boot UEFI. Intel Boot Guard, introduit avec les processeurs

de 4ème génération, implémente une racine de confiance matérielle vérifiant l'authenticité

du premier code exécuté lors du démarrage avec deux modes opérationnels distincts : le

mode Verified Boot, qui vérifie l'authenticité du firmware sans bloquer nécessairement

l'exécution en cas d'échec, et le mode Measured Boot, qui calcule une empreinte

cryptographique du firmware et la stocke dans le TPM pour permettre une attestation

ultérieure. La clé publique de vérification est stockée dans des fusibles électroniques non

reprogrammables, établissant un ancrage de confiance résistant à la subversion.

Parallèlement, AMD a développé sa propre solution avec le Platform Security Processor

(PSP), un coprocesseur de sécurité intégré qui vérifie l'intégrité du BIOS avant son

exécution et implémente une racine de confiance matérielle pour le système. Son

architecture repose sur un cœur ARM dédié, isolé du processeur principal, garantissant

ainsi une séparation physique entre l'environnement d'exécution sécurisé et le reste du

système. Le PSP implémente également des capacités de chiffrement autonomes et

prend en charge l'implémentation du firmware TPM (fTPM).

Ces technologies constituent une défense significative contre les attaques ciblant la

phase du démarrage, comme le souligne l'ANSSI dans ses recommandations pour les

plateformes x86 [ANSSI 2019]. Cependant, ces protections ont montré leurs limites avec

la découverte de vulnérabilités critiques. La faille CVE-2024-7344, identifiée par les

chercheurs d'ESET en janvier 2025, permet le contournement du Secure Boot. [ESET

2024]. Cette vulnérabilité critique exploite une faiblesse dans le processus de validation

des signatures du bootloader, permettant à un attaquant disposant de privilèges

administratifs d'injecter du code non signé dans la chaîne de démarrage.

Dans l'architecture ARM, il existe ce qu’on appelle Trusted Firmware (ATF), ce processus,

similaire au fonctionnement de Secure Boot implique plusieurs étapes : BL1 (ROM) →

BL2 (Trusted Boot Firmware) → BL3 (Runtime Firmware) → OS

3.2.2 Trusted Platform Module : variantes et vulnérabilités

Le TPM représente une composante fondamentale dans l'architecture de sécurité

modernes. Spécifié par le Trusted Computing Group (TCG), le TPM 2.0 constitue

aujourd'hui la norme dominante dans ce domaine, succédant à sa version 1.2 avec des

améliorations en termes de fonctionnalités cryptographiques et de résistance aux

attaques [ISO 2015].

Le TPM assure plusieurs fonctions primordiales dans l'architecture de sécurité globale. Il

permet la génération et le stockage sécurisé de clés cryptographiques, offre des

29

capacités de mesure et d'attestation de l'intégrité du système via ses registres de

configuration de plateforme (PCR), le scellement cryptographique de données, et fournit

une source fiable de nombres aléatoires [Arthur 2015].

L'écosystème TPM présente plusieurs implémentations, chacune avec ses compromis

entre sécurité, coût et intégration.

Le dTPM constitue l'implémentation la plus traditionnelle et, théoriquement, la plus

sécurisée. Cette forme de TPM est un composant matériel physiquement, généralement

sous forme de puce dédiée, connecté à la carte mère via un bus LPC (Low Pin Count) ou

SPI (Serial Peripheral Interface). Cette séparation physique confère au dTPM un niveau

d'isolation supérieur face aux attaques logicielles. L’ANSSI recommande explicitement

cette implémentation pour les environnements à haute sensibilité [ANSSI 2019].

Le fTPM représente une évolution plus récente, consistant en une implémentation

logicielle exécutée dans un environnement privilégié du processeur. C’est ce qu’utilise

AMD avec le Platform Security Processor et Intel avec son Platform Trust Technology

(PTT). Cette approche présente l'avantage de réduire les coûts et la complexité de

conception. Toutefois, le fTPM partage partiellement son environnement d'exécution avec

d'autres composants du système, réduisant son isolation face à certaines catégories

d'attaques.

Ces implémentations ne sont pas exemptes de vulnérabilités, la vulnérabilité TPM-FAIL a

démontré la possibilité d'extraire des clés privées via des attaques temporelles contre des

TPM. Sur le fTPM d'Intel, les chercheurs ont récupéré une clé ECDSA après seulement

1 300 observations en moins de deux minutes et sur un TPM matériel de

STMicroelectronics cette clé a été extraite après 40 000 observations en 80 minutes.

[TPM-FAIL 2020]

Le vTPM constitue une implémentation entièrement logicielle, généralement déployée

dans des environnements virtualisés pour fournir des fonctionnalités TPM aux machines

virtuelles. Google a été le premier fournisseur majeur de cloud à offrir des TPM virtualisés

dans le cadre de leur produit. L'hyperviseur gère généralement ces instances de vTPM

dont le niveau de sécurité dépend fondamentalement de la robustesse de l'hyperviseur

et de l'environnement d'exécution hôte.

L'efficacité de ces différentes variantes de TPM face aux menaces dépend non seulement

de leur mode d'implémentation, mais également de leur intégration cohérente dans

l'architecture de sécurité globale du système. Les évolutions récentes dans le domaine

des TPM tendent vers une intégration du fTPM.

3.3 Solutions pour systèmes embarqués

3.3.1 ARM TrustZone / RISC-V PMP

ARM TrustZone représente la technologie de sécurité dominante dans l'écosystème des

systèmes embarqués modernes. Introduite par ARM, en 2004, cette technologie

implémente un concept de séparation matérielle entre deux mondes d'exécution : un

monde sécurisé (Secure World), pour les opérations critique et un monde normal (Normal

30

World), dans lequel l’OS tournera. Initialement conçue pour les processeurs haut de

gamme, cette technologie a été étendu sur un grand ensemble de microcontrôleurs et

s'est imposée comme un élément clé dans la sécurisation des applications IoT sensibles,

notamment pour le paiement mobile, l'authentification biométrique et la protection des

clés cryptographiques.

Cette isolation s'étend à tous les niveaux de l'architecture système. Au niveau du

processeur, TrustZone implémente un bit d'état Non-Secure (NS) qui détermine si le CPU

fonctionne dans le monde sécurisé (NS=0) ou non-sécurisé (NS=1). Pour la mémoire, le

Security Attribution Unit (SAU) partitionne l'espace d'adressage, attribuant des régions

spécifiques à chaque monde. Les périphériques sont contrôlés par le Security

Configuration Controller (SCC) qui définit leur accessibilité depuis chaque monde. Enfin,

les bus système propagent le bit NS à travers toutes les transactions, garantissant que la

séparation des mondes est maintenue jusqu'aux périphériques externes.

Une étude de 2019 sur un SoC CortexA53 (Raspberry Pi 3) montre que le basculement

entre mondes sécurisé et non sécurisé prend ≈ 1520 µs et que les calculs réalisés dans

le Secure World n’encaissent que < 5 % de perte de performance, seule l’écriture dans

le secteur de stockage chiffré souffre d’un ralentissement (débit ÷ 7) [Amacher 2019].

L'architecture RISC-V propose une approche différente mais complémentaire avec son

mécanisme Physical Memory Protection (PMP).

Le mécanisme PMP définit 64 régions mémoire qui peuvent être individuellement

configurées pour appliquer des permissions d'accès. Les caractéristiques architecturales

du PMP sont :

• Hiérarchie des privilèges : Machine-mode (M-mode), Supervisor-mode (S-mode)

et User-mode (U-mode)

o Configuration exclusive M-mode : Seul ce mode peut programmer les

registres PMP

• Verrouillage irrévocable : Le bit L empêche toute modification jusqu'au reset du

matériel (même par un logiciel qui peut être en M-mode)

• Les permissions de lecture (R), d'écriture (W) et d'exécution (X) par région

Cette architecture de sécurité trouve une application particulièrement pertinente dans le

contexte des environnements d'exécution de confiance (Trusted Execution Environment,

TEE), où l'isolation totale entre composants sécurisés et non sécurisés constitue un

impératif absolu.

3.3.2 Secure Elements et enclaves sécurisées

Un Secure Element (SE) représente l’approche hardware la plus robuste pour la

protection cryptographique, généralement sous la forme d’un microprocesseur sécurisé

dédié (forme de puce distincte ou intégrée), qui offre un environnement hautement

sécurisé.

L’architecture typique d'un Secure Element :

• Protection physique : Blindage métallique, maillage actif

31

• Capteurs anti-intrusion : Détection tension, température, lumière, fréquence

• Moteur cryptographique : Accélérateurs RSA/ECC, AES, SHA

• Mémoire non-volatile : EEPROM/Flash sécurisée pour clés et certificats

• Interface limitée : SPI/I2C avec authentification des commandes

Les SE se déclinent en plusieurs formats : eSE (embedded Secure Element) soudé à la

carte mère, eSIM, module discret SPI ou carte micro-SD sécurisée. Les SE atteignent

typiquement Common Criteria EAL5+ ou FIPS 140-3 niveau 2, les rendant adaptés aux

applications critiques comme paiements mobiles ou passeports électroniques.

Les enclaves sécurisées (TEE) représentent une évolution du concept de Secure

Element, en offrant un environnement d'exécution isolé directement intégré au sein des

processeurs principaux. Elles créent une zone protégée tout en partageant certaines

ressources avec le processeur hôte. Celle-ci sont utilisé par des technologies comme

Intel SGX ou Arm Confidential Compute Architecture.

Parmi les avantages clés des enclaves sécurisées, on trouve :

• La protection des données en cours d'utilisation, chiffrées au sein de l'enclave

• Isolation des algorithmes utilisées

• La résistance aux tentatives de falsification matérielles et logicielles

• Le support du démarrage sécurisé et des mises à jour de firmware authentifiées

3.3.3 Synergie entre Secure Element et enclave

L'intégration synergique des Secure Elements et des enclaves sécurisées représente une

proposition d’architecture intéressante pour les systèmes embarqués, combinant les

forces respectives de chaque technologie dans une approche défense en profondeur.

Cette architecture hybride s'articule autour :

1. Secure Element comme racine de confiance matérielle

• Stockage des clés racines dans une mémoire EEPROM protégée

• Authentification cryptographique de l’enclave via signatures ECDSA

• Validation de chaque mise à jour de firmware par le SE avant chargement

dans l’enclave (« comme un Secure Boot »).

2. Enclave pour l’exécution isolée

• Exécution des opérations cryptographiques sensibles (chiffrement,

signature, génération d’aléas) dans un environnement isolé, « sans

impact » sur l’OS hôte.

• Protection contre les attaques par DMA grâce à l’usage d’un contrôleur

d’accès dédié, bloquant tout accès direct à la mémoire de l’enclave.

3. Persistance et attestation via le SE avec des scellement des clés et stockage des

certificats

4. Protection d'exécution continue par l'enclave

• Surveillance active de l’intégrité du code et des données chargés dans

l’enclave (measurement & runtime integrity checks).

32

• Mise en place de mécanismes de remédiation automatique (reset partiel,

rollback) en cas de détection d’anomalie.

En combinant ces deux composants, l’enclave déleste le CPU principal pour les tâches

de sécurité en temps réel, tandis que le Secure Element assure en arrière-plan la

persistance et l’attestation, permettant ainsi une gestion optimisée de l’énergie et une

réduction de la complexité logicielle.

Malgré leurs différences fondamentales, toutes ces approches partagent le même

objectif : fournir une racine de confiance robuste, tout en tenant compte des contraintes

spécifiques des plateformes qu'elles protègent.

3.4 Analyse comparative des solutions

Les architectures de protection matérielle présentées révèlent des compromis

fondamentaux entre sécurité, performance et contraintes d'implémentation. Cette section

propose une analyse comparative systématique des différentes approches.

Les solutions pour plateformes x86/x64 offrent généralement le niveau de protection le

plus élevé. Le TPM discret représente l'approche la plus robuste, avec une isolation

matérielle complète et une forte résistance aux attaques physiques, bien que son coût

soit significativement plus élevé. Les implémentations firmware (fTPM) d'Intel et AMD

constituent un compromis attractif : intégrées directement dans le processeur, elles

réduisent les coûts tout en maintenant un niveau de sécurité acceptable pour la majorité

des cas d'usage, malgré une résistance moindre aux attaques physiques.

Dans l'écosystème embarqué, les contraintes de ressources imposent des approches

différentes. ARM TrustZone s'est imposée comme la solution dominante pour les

processeurs de moyenne et haute gamme, offrant une isolation matérielle efficace avec

un surcoût de performance minimal (moins de 5% selon [Amacher 2019]). Cette

technologie bénéficie d'une intégration native dans l'architecture ARM, éliminant les coûts

additionnels tout en maintenant une résistance raisonnable aux attaques. Pour les

architectures RISC-V, le mécanisme PMP (Physical Memory Protection) propose une

alternative libre.

Les Secure Elements occupent une position particulière dans cet écosystème. Offrant le

niveau de protection physique le plus élevé grâce à leur conception dédiée et leurs contre-

mesures hardware. Leur coût élevé et leur bande passante limitée par les interfaces de

communication (SPI) restreignent cependant leur adoption généralisée.

En synthèse, le choix de la solution « optimale » dépend étroitement du contexte

d'application et des menaces spécifiques. Les environnements critiques justifient

l'investissement dans des solutions matérielles dédiées (TPM discret, Secure Elements),

tandis que les déploiements à grande échelle privilégient souvent les approches intégrées

(fTPM, TrustZone). La tendance actuelle vers des architectures hybrides, combinant

plusieurs mécanismes de protection, reflète la nécessité d'adapter les défenses à la

sophistication croissante des attaques.

33

Solution Forces Faiblesses

TPM discret (dTPM) Isolation matérielle complète

Résistance élevée aux attaques
logicielles

Coût plus élevé

Vulnérabilité aux attaques sur bus de
communication

Bande passante limitée

TPM firmware (fTPM) Coût réduit

Performance supérieure

Intégration native

Isolation réduite

Dépendance à la sécurité du CPU

Vulnérabilité aux attaques du
processeur

TPM virtuel (vTPM) Flexibilité maximale

Mise à jour simplifiée

Sécurité dépendante de l'hyperviseur

Risques d'attaques inter-VM

Pas de protection matérielle

ARM TrustZone Intégration native dans SoC

Faible impact énergétique

Isolation matérielle légère

Surface d'attaque au niveau du moniteur
(logiciel gérant les transitions entre les
mondes)

Isolation binaire (seulement deux
mondes)

RISC-V PMP Architecture ouverte et flexible

Faible surcoût en silicium

Maturité limitée et écosystème en
développement

Secure Elements Protection physique maximale

Résistance aux attaques
matérielles

Coût important

Interface limitée

Performance restreinte

Table 1 - Tableau récapitulatif des solutions de sécurité

34

Le TPM 2.0 comme élément
central de protection

4. Le TPM 2.0 comme élément central de

protection

À la suite de l'analyse des architectures de protection matérielle présentées dans le

chapitre précédent, cette section se concentre sur le Trusted Platform Module 2.0, qui

s'est progressivement imposé comme la pierre angulaire des chaînes de confiance

modernes. Déployé aussi bien dans les ordinateurs personnels que dans les

infrastructures cloud et les systèmes embarqués, le TPM constitue aujourd'hui l'ancre

matérielle de référence pour sécuriser les plateformes informatiques. La version 2.0,

standardisée par le Trusted Computing Group (TCG) en 2015 et révisée en 2019,

représente une évolution majeure par rapport à son prédécesseur. Elle introduit

notamment un modèle cryptographique permettant l'évolution des algorithmes (dont le

support des algorithmes quantiques), ainsi que le support natif de la cryptographie à

courbes elliptiques et des politiques d'accès conditionnelle. Cette section examine

successivement l'architecture interne et les fonctionnalités du TPM 2.0 (4.1), ses

principaux cas d'usage pour la protection des systèmes (4.2), ainsi que ses limites et

vulnérabilités connues (4.3), permettant ainsi d'évaluer son rôle effectif dans les

architectures de sécurité.

4.1 Architecture et fonctionnalités du TPM 2.0

4.1.1 Composants et opérations fondamentales

Le TPM 2.0 se présente comme un cryptoprocesseur sécurisé, conçu pour protéger les

informations sensibles et garantir l'intégrité des plateformes. En tant que racine de

confiance matérielle, il constitue le fondement sur lequel repose l'ensemble de la chaîne

de sécurité d'un système.

Au cœur du module de ce TPM 2.0 se trouve un processeur cryptographique qui prend

en charge diverses opérations cryptographiques essentielles, la génération de nombres

aléatoires, la création et la gestion de clés cryptographiques, ainsi que les opérations de

chiffrement, déchiffrement et signature. Ce processeur est complété par plusieurs

35

générateurs d'algorithmes cryptographiques, parmi lesquels figurent obligatoirement

RSA, SHA-1, SHA-256 et HMAC, auxquels s'ajoutent maintenant des algorithmes comme

l'ECC (Elliptic Curve Cryptography) et AES [Arthur 2015].

Figure 5 - Architecture interne d'un TPM 2.0 (source : https://www.researchgate.net/figure/Main-
components-of-Trusted-Platform-Module-TPM_fig1_363027155)

La mémoire non volatile du TPM constitue un élément critique de son architecture,

permettant de stocker de manière sécurisée différents types de données persistantes :

• Les clés d'endossement (Endorsement Keys), générées lors de la fabrication du

TPM et uniques à chaque module

• Les clés de stockage (Storage Root Keys), utilisées pour protéger d'autres clés

et données sensibles

• Les mesures d'intégrité du système enregistrées dans les registres PCR

• Les politiques de sécurité qui définissent les conditions d'accès aux ressources

protégées

Les registres PCR constituent le cœur du mécanisme de mesure d'intégrité. Ces registres

ne sont pas modifiables directement, mais uniquement à travers une opération appelée

"extension". L'opération d'extension PCR suit la formule : PCR[i] = Hash(PCR[i] ||

data_to_extend), où || représente la concaténation. Cette propriété mathématique garantit

qu'une fois une valeur étendue, il est cryptographiquement impossible de manipuler le

registre pour revenir à un état précédent sans réinitialiser entièrement le TPM.

Le TPM 2.0 dispose typiquement de 24 registres PCR (contre 16 pour le TPM 1.2),

numérotés de 0 à 23, chacun ayant une fonction spécifique définie par la spécification

TCG :

• PCR 0-7 : Réservés pour les mesures BIOS/UEFI et firmware

https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155
https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155

36

• PCR 8-15 : Attribués aux composants du système d’exploitation (boot loader, OS

kernel, modules)

• PCR 16 : Destiné aux tests et débogage

• PCR 17-22 : Réservés pour le DRTM

• PCR 23 : Support d’application, librement exploitable par l’OS ou les applications

utilisateur

Comme le précise la norme ISO/IEC 11889:2015 [ISO 2015], le TPM 2.0 implémente

également une hiérarchie de clés, structurée autour de quatre domaines principaux : la

hiérarchie d'endossement, utilisée pour les fonctions d'attestation et l'identification unique

du TPM, la hiérarchie de plateforme, réservée aux constructeurs et aux administrateurs

système, la hiérarchie de stockage, dédiée à la protection des données utilisateurs, et la

hiérarchie Null, qui fournit un mécanisme pour les opérations temporaires sans

persistance. Cette architecture hiérarchisée permet une séparation claire des

responsabilités et des privilèges.

Les opérations fondamentales du TPM 2.0 s'articulent autour de plusieurs fonctions

cryptographiques essentielles :

• La génération et la protection de clés cryptographiques, avec la possibilité de

créer des clés qui ne peuvent jamais quitter le périmètre sécurisé du TPM ("non-

migratable keys").

• L'attestation, permettant de prouver de manière cryptographique l'état d'intégrité

d'un système à un tiers vérificateur, basé sur les valeurs PCR signées par une

clé d'attestation.

• Le scellement (sealing) et le descellement (unsealing) de données, assurant que

les informations sensibles ne peuvent être déchiffrées que si la plateforme se

trouve dans un état d'intégrité prédéfini.

• La mesure et l'enregistrement sécurisés de l'état du système via des opérations

d'extension des registres PCR

4.1.2 Modèle de sécurité

Le modèle de sécurité du TPM 2.0 repose sur plusieurs mécanismes de protection

complémentaires qui garantissent la robustesse de l'ensemble du système.

Le TPM 2.0 implémente un mécanisme de protection contre les attaques par force brute.

Ce système verrouille automatiquement le TPM après un nombre défini de tentatives

d'authentification échouées (typiquement 32), puis impose un délai croissant entre

chaque nouvelle tentative, celui-ci est rénitialisé après un certain temps.

Au-delà de cette protection, le TPM 2.0 introduit un système de sessions d’autorisation

démarrées via TPM2_StartAuthSession(), divisées en sessions HMAC et sessions Policy.

Les sessions HMAC reposent sur une clé secrète partagée pour authentifier l’utilisateur,

tandis que les sessions Policy permettent de composer des règles complexes combinant

l’état des PCR, des contraintes temporelles, des signatures externes ou même des

localités.

37

Chaque requête TPM est transmise dans un tampon de commande structuré : un

préambule de dix octets qui inclut notamment les champs tag (type de session),

commandSize et commandCode. Ce découpage permet une hiérarchisation des

commandes.

• Commandes non restreintes : Accessibles sans autorisation préalable,

principalement utilisées pour l'interrogation des capacités du TPM (ex.

TPM2_GetCapability, TPM2_GetRandom)

• Commandes authentifiées : Requièrent une session d'autorisation valide et sont

utilisées pour les opérations cryptographiques courantes (ex. TPM2_Create,

TPM2_Sign)

• Commandes privilégiées : Réservées aux propriétaires des hiérarchies TPM,

permettent la modification de l'état global du module (ex. TPM2_Clear,

TPM2_HierarchyControl)

• Commandes de maintenance : Utilisables uniquement en mode Field Upgrade

Mode (FUM) pour les mises à jour du firmware

Enfin, la sécurité physique et logique du TPM 2.0 est garantie par une isolation matérielle

renforcée (puce dédiée, stockage non volatile protégé), des mécanismes anti-tampering

et des anti-canaux auxiliaires exigeant des implémentations « constant time » avec en

plus des commandes contrôlées de verrouillage et de réinitialisation de l’état interne. Cet

empilement de protections fait du TPM 2.0 une racine de confiance robuste, capable de

répondre aux exigences des environnements PC, cloud et IoT tout en restant extensible

face aux nouvelles menaces.

4.2 Cas d'usage de protection avec TPM

Le TPM 2.0 offre un ensemble de primitives cryptographiques qui peuvent être combinées

pour répondre à différents besoins de sécurité. Cette section examine les principaux cas

d'usage où le TPM apporte une valeur ajoutée significative en termes de protection

matérielle, depuis la sécurisation du processus de démarrage jusqu'à la protection des

données sensibles en passant par les mécanismes d'attestation.

4.2.1 Protection de l'intégrité du firmware

La protection de l'intégrité du firmware constitue l'un des cas d'usage les plus critiques du

TPM 2.0, le TPM offre des mécanismes permettant de détecter toute altération

malveillante du firmware et d'établir une chaîne de confiance dès le démarrage.

Le processus de mesure d'intégrité s'inscrit dans le cadre du Secure Boot, où chaque

composant du firmware est mesuré cryptographiquement avant son exécution. Ces

mesures sont enregistrées dans les registres PCR via des opérations d'extension selon

la formule présentée en section 4.1.1, créant ainsi une chaîne de mesures inaltérable qui

reflète fidèlement la séquence de démarrage.

La séquence typique de protection comprend :

• L'exécution du code d'initialisation immuable (Root of Trust for Measurement)

38

• Le calcul d'un hachage cryptographique du firmware UEFI/BIOS

• L'extension de cette mesure dans les PCR appropriés

• La mesure récursive de chaque composant suivant dans la chaîne

Cette approche, permet de détecter toute modification non autorisée des composants

firmware. En effet, une altération du firmware entraînerait inévitablement une modification

des valeurs enregistrées dans les PCR.

Les standards récents, notamment le RFC 9683 publié par l'IETF en décembre 2024

(« Remote Integrity Verification of Network Devices Containing Trusted Platform

Modules »), soulignent l'importance cruciale de cette première mesure effectuée par le

RTM, qui constitue le fondement de toute la chaîne de confiance ultérieure.

Au-delà de la simple détection, le TPM permet d'implémenter des mécanismes de

réaction aux compromissions via le « scellement conditionnel ». Cette technique garantit

que les données sensibles, comme les clés de chiffrement de disque, restent

inaccessibles si le firmware a été altéré. Dans le contexte des réseaux d'entreprise, cette

capacité permet de mettre en œuvre des politiques d'accès, où seuls les dispositifs

présentant un état firmware validé sont autorisés à accéder aux ressources souhaitées.

Il convient toutefois de noter que la protection TPM reste limitée face à certaines attaques

matérielles. Une compromission au niveau du circuit intégré ou des bus de

communication peut potentiellement contourner ces mécanismes, rappelant l'importance

d'une approche défense en profondeur.

4.2.2 Attestation de l'état système

L'attestation représente l'une des fonctionnalités les plus distinctives du TPM 2.0,

permettant à une plateforme de prouver cryptographiquement son état d'intégrité à un

vérificateur distant. Cette capacité prend une importance dans les architectures Zero

Trust où la confiance ne peut être présupposée et doit être continuellement vérifiée.

Le TPM supporte plusieurs formes d'attestation, dont la plus fondamentale est l'attestation

des valeurs PCR. Dans ce processus, le vérificateur émet un défi cryptographique

(nonce) que le TPM doit signer conjointement avec les valeurs actuelles de ses registres

PCR, en utilisant une clé d'attestation (Attestation Identity Key). La signature produite

prouve non seulement l'authenticité du TPM, mais également l'état exact du système au

moment de l'attestation.

L'attestation peut également s'étendre aux objets protégés par le TPM, tels que les clés

cryptographiques. Cela permet de certifier qu'une clé particulière possède certaines

propriétés (par exemple, qu'elle a été générée au sein du TPM), renforçant ainsi la

confiance dans les opérations cryptographiques réalisées avec cette clé.

Le dernier type d’attestation est l’attestation directe anonyme (Direct Anonymous

Attestation). Cette technique permet à un TPM de prouver qu'il est authentique et non

compromis, sans révéler son identité unique, préservant ainsi la confidentialité de

l'utilisateur.

39

Figure 6 - Diagramme d'attestation avec le TPM : Flux de communication entre le système
attesté (Attestor) et le vérificateur (Verifier) montrant les étapes de challenge, signature et

vérification (source : https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-
Attestation.html)

Dans le contexte des infrastructures cloud, l'attestation TPM joue un rôle dans la

sécurisation des environnements virtualisés. Comme le révèlent les documentations des

différents fournisseurs cloud, les vTPM sont désormais largement déployés pour fournir

des garanties d'intégrité aux machines virtuelles, permettant ainsi d'étendre les bénéfices

de l'attestation aux environnements « multi-locataires ». L'attestation à distance permet

aux parties tierces de vérifier l'intégrité de la chaîne de démarrage complète. Celle-ci est

aussi utilisé dans l’architecture Zero Trust comme sur Microsoft Azure qui utilise

l'attestation TPM pour valider l'intégrité des nœuds de calcul avant d'autoriser l'exécution

de charges de travail jugés sensibles.

4.2.3 Scellement de données sensibles

Le scellement de données (sealing) constitue l'un des mécanismes de protection les plus

puissants offerts par le TPM 2.0. Cette fonctionnalité permet de chiffrer des données de

telle sorte qu'elles ne puissent être déchiffrées que si le système se trouve dans un état

d'intégrité spécifique, offrant ainsi une protection contre les attaques visant à extraire des

informations sensibles d'un système compromis.

Le processus de scellement associe cryptographiquement les données protégées à un

ensemble de valeurs PCR cibles, représentant l'état d'intégrité du système dans lequel le

descellement (unsealing) sera autorisé. Techniquement, cette association est réalisée en

chiffrant les données avec une clé dérivée des valeurs PCR spécifiées, garantissant ainsi

https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html

40

que seul un système présentant ces mêmes valeurs PCR pourra réaliser l'opération de

descellement.

Figure 7 - Processus de scellement/descellement TPM - (a) Création d'un objet scellé avec une
politique d'autorisation - (b) Descellement conditionnel des données après vérification de la
politique et de l'état du système (source : https://tpm2-software.github.io/2021/02/17/Protecting-
secrets-at-TPM-interface.html)

L'utilisation la plus répandue concerne les solutions Full Disk Encryption (FDE) comme

BitLocker de Microsoft ou LUKS sous Linux. La clé principale est scellée par le TPM et

ne peut être récupérée que si les composants critiques du système n'ont pas été altérés,

protégeant ainsi contre les attaques de démarrage.

Dans les environnements cloud, le scellement TPM joue un rôle crucial pour protéger les

clés utilisées dans les enclaves sécurisées et les conteneurs confidentiels, garantissant

que les données sensibles restent inaccessibles même à l'infrastructure d'hébergement.

Le TPM 2.0 introduit des capacités étendues via les Enhanced Authorization Policies,

permettant de définir des conditions de descellement combinant : Des valeurs PCR

spécifiques (reflétant l'intégrité du système), l’authentification utilisateur (PIN, mot de

passe, biométrie), des signatures cryptographiques externes…

Cette flexibilité permet d'implémenter des modèles de sécurité multicouches adaptés aux

exigences spécifiques de chaque cas d'usage. Par exemple, dans une configuration

d'entreprise, le descellement d'une clé peut nécessiter à la fois un système intègre

(vérification PCR), une authentification forte de l'utilisateur (carte d’accès + PIN), et une

validation temporelle (accès uniquement pendant les heures ouvrables). Dans un

environnement industriel déployé sur des dispositifs IoT, le scellement TPM peut garantir

que les clés cryptographiques utilisées pour la communication réseau ne soient

accessibles que si le firmware et les composants critiques n’ont subi aucune altération,

limitant ainsi fortement les possibilités d’une intrusion par des modifications matérielles

ou logicielles non autorisées.

Un défi opérationnel majeur concerne la gestion des mises à jour légitimes. Les

modifications du firmware ou des composants système altèrent inévitablement les valeurs

PCR, rendant impossible le descellement des données. Des stratégies appropriées

doivent être mises en place :

https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html
https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html

41

• Descellement temporaire et re-scellement avec les nouvelles valeurs PCR

• Utilisation de politiques flexibles autorisant plusieurs ensembles de PCR valides

• Mécanismes de récupération d'urgence (recovery keys) pour les situations

exceptionnelles

4.3 Limites et vulnérabilités connues

Bien que le modèle de sécurité du TPM 2.0 soit robuste en théorie, de nombreuses

faiblesses d'implémentation existent en pratique. Diverses études récentes mettent en

évidence ces vulnérabilités pratiques, notamment des failles cryptographiques ou

physiques, démontrant ainsi que la sécurité offerte par le TPM n’est efficace que sous

réserve d’une mise en œuvre rigoureuse et continue.

4.3.1 Faiblesses d'implémentation

Malgré la robustesse théorique de son modèle de sécurité, le TPM 2.0 n'est pas exempt

de faiblesses d'implémentation qui peuvent compromettre significativement les garanties

qu'il est censé fournir.

Au-delà des attaques par canaux auxiliaires comme TPM-FAIL décrites précédemment

(voir section 3.2.2), l'écosystème TPM 2.0 a révélé une multiplicité de vulnérabilités

d'implémentation affectant différentes couches du système. Une vaste étude de Svenda

[TPMScan 2024] a révélé une grande variabilité dans la qualité des implémentations

disponibles sur le marché. L'étude a notamment identifié des déficiences dans la

génération de nombres aléatoires de certains TPM, rendant potentiellement vulnérables

l'ensemble des opérations cryptographiques qui en dépendent.

En 2023, des chercheurs de Quarkslab ont découvert deux vulnérabilités majeures (CVE-

2023-1017 et CVE-2023-1018) dans l'implémentation de référence du TPM 2.0 fournie

par le Trusted Computing Group. Ces vulnérabilités, respectivement de type

dépassement de tampon en écriture et en lecture, peuvent être déclenchées par des

applications en mode utilisateur envoyant des commandes TPM 2.0, plus particulièrement

la fonction CryptParameterDecryption() qui est utilisé pour traiter les paramètres chiffrés

des commandes TPM. Selon l'analyse de SecurityWeek, cette faille permettait à un

attaquant authentifié disposant d'un accès local d'accéder en lecture à des données

sensibles ou de remplacer des données normalement protégées par le TPM, comme les

clés cryptographiques. L'impact potentiel inclut la divulgation d'informations sensibles,

l'élévation de privilèges, et dans certains cas, l'exécution arbitraire de code au sein du

TPM. [Falcon 2023]

Comme l'a révélé la publication détaillée de Quarkslab, ces failles affectent

potentiellement des milliards d'appareils, y compris des TPM matériels et des

implémentations logicielles utilisées dans les solutions de virtualisation majeures comme

VMware, Microsoft Hyper-V et QEMU. [Falcon 2023]

Au-delà des vulnérabilités purement cryptographiques, des faiblesses ont également été

identifiées dans la mise en œuvre des mécanismes de protection physique des TPM. Bien

que conçus pour résister aux tentatives d'extraction physique d'informations, certains

42

TPM se sont révélés vulnérables à des techniques avancées d'analyse invasive, telles

que l'analyse par sonde électromagnétique ou la microscopie à faisceau d'ions focalisés

[Forgette 2022]. Ces vulnérabilités remettent en question l'hypothèse fondamentale selon

laquelle les secrets stockés dans le TPM demeurent inaccessibles même face à un

attaquant disposant d'un accès physique au dispositif.

Les implémentations firmware du TPM (fTPM), qui exécutent les fonctionnalités TPM au

sein d'environnements d'exécution sécurisés comme Intel SGX ou ARM TrustZone plutôt

que dans un composant matériel dédié, présentent leurs propres vulnérabilités

spécifiques. Ces implémentations héritent potentiellement des vulnérabilités de leur

environnement d'exécution sous-jacent, comme l'ont démontré diverses attaques contre

les technologies d'enclaves sécurisées [Raj 2016]. En 2022, AMD a d'ailleurs annoncé

que leur implémentation fTPM pouvait, causer des problèmes de performance,

nécessitant une mise à jour du BIOS pour y remédier.

4.3.2 Contournements pratiques

Au-delà des faiblesses d'implémentation intrinsèques au TPM lui-même, diverses

techniques de contournement pratique ont été développées pour neutraliser les

protections offertes par le TPM 2.0, notamment dans le contexte de la sécurisation du

processus de démarrage et de la protection des données. Comme l'ont souligné plusieurs

chercheurs [Svenda 2024], le modèle de sécurité du TPM repose sur l'hypothèse

fondamentale que tous les composants de la chaîne de démarrage jusqu'au point de

mesure sont exempts de vulnérabilités, une hypothèse irréaliste dans les systèmes.

Les TPM sont généralement connectés au système principal sur des bus standardisés

(SPI, I2C ou LPC). Des attaquants peuvent intercepter ou modifier les communications

sur ces bus, potentiellement en injectant des commandes malveillantes ou en capturant

des informations sensibles. Bien que ces attaques nécessitent un accès physique, elles

peuvent compromettre fondamentalement la sécurité du système TPM [Svenda 2024].

Une approche de contournement concerne les attaques de réinitialisation des PCR. Dans

certaines configurations, un attaquant disposant de privilèges administratifs peut forcer la

réinitialisation du TPM sans redémarrer le système, effaçant ainsi les mesures d'intégrité

enregistrées dans les PCR. Cette manipulation peut permettre de contourner les

mécanismes de scellement conditionnés aux valeurs PCR, comme l'a démontré Forgette

[Forgette 2022] dans sa présentation « TPM is not the holy way ».

Les attaques par démarrage à froid (Cold Boot Attacks), attaques nécessitant un

refroidissement physique de la mémoire (typiquement avec de l'azote liquide) permettent

de prolonger la persistance des données et permettre leur extraction. Cette technique

permet de récupérer les clés de chiffrement une fois qu'elles ont été déchiffrées par le

TPM et quand elles sont chargées en mémoire principale.

Les implémentations de TPM virtuel (vTPM) présentent des vecteurs de contournement

spécifiques. Si l'hyperviseur qui héberge le vTPM est compromis, toutes les garanties de

sécurité offertes par le vTPM peuvent être invalidées. Cette vulnérabilité est

particulièrement préoccupante dans les environnements cloud où les TPM virtuels sont

43

fréquemment utilisés pour fournir des garanties d'intégrité aux machines virtuelles [Arthur

2015]. Les chercheurs de Quarkslab ont d'ailleurs démontré que les vulnérabilités qu'ils

ont découvertes dans l'implémentation de référence du TPM 2.0 affectaient les principales

solutions de virtualisation, révélant ainsi un risque d'évasion de machine virtuelle. Dans

les environnements cloud, les vTPM introduisent des défis de sécurité supplémentaires

liés au partage des ressources physiques. Les attaques de type "cross-VM" peuvent

potentiellement exploiter les canaux cachés entre machines virtuelles partageant le

même matériel physique pour compromettre l'isolation de ses machines. Cette

problématique est particulièrement critique dans les offres de cloud public où l’utilisateur

n’a aucun contrôle sur l’infrastructure dont il dépend.

Cette limitation est particulièrement problématique dans le contexte des attaques "Time-

of-Check to Time-of-Use" (TOCTOU), où un attaquant peut compromettre le système

entre le moment de la mesure d'intégrité et l'utilisation effective des ressources protégées.

Le TPM ne peut garantir l'intégrité que jusqu'au moment de la mesure, sans aucune

protection contre les compromissions ultérieures. Même un TPM parfaitement sécurisé

ne peut garantir la sécurité globale d'un système si ce dernier présente des vulnérabilités

au niveau du firmware UEFI/BIOS, du chargeur d'amorçage ou du système d'exploitation.

L'analyse des vulnérabilités du TPM 2.0 révèle un paradoxe fondamental : ce composant

censé sécuriser l'ensemble du système introduit lui-même de nouvelles surfaces

d'attaque. Les vulnérabilités identifiées, allant des faiblesses cryptographiques aux

erreurs d'implémentation, illustrent la difficulté à créer un composant de sécurité

véritablement infaillible. Microsoft ayant imposé l’utilisation du TPM en 2021, comme

composant de sécurité obligatoire pour Windows 11, quand ce composant lui-même a été

affecté par des vulnérabilités critiques.

Ces contournements pratiques illustrent une réalité fondamentale de la sécurité

informatique : aucun mécanisme de protection isolé, ne peut garantir une sécurité

absolue. Une approche de défense en profondeur, combinant différentes technologies de

protection et pratiques de sécurité, reste indispensable pour établir un niveau de sécurité

robuste face à des adversaires déterminés.

4.4 Synthèse critique des forces et faiblesses du TPM 2.0

Avant de conclure ce mémoire, il est essentiel de réaliser une synthèse structurée des

capacités et limites du TPM 2.0, permettant d'identifier clairement ses domaines

d'efficacité et ses points de vulnérabilité.

4.4.1 Forces du TPM 2.0: contextes d'efficacité

Le TPM 2.0 offre une protection significative dans plusieurs scénarios d'attaque, bien que

cette protection soit soumise à certaines conditions :

Protection contre les attaques logicielles conventionnelles : Le TPM offre une protection

significative pour les clés cryptographiques et secrets contre les attaques purement

logicielles, même avec des privilèges élevés dans le système d'exploitation. Les

opérations cryptographiques critiques peuvent s'exécuter entièrement dans

44

l'environnement isolé du TPM, sans jamais exposer les clés privées à la mémoire

principale. Toutefois, l'efficacité réelle dépend fortement de la qualité d'implémentation

des applications qui interagissent avec le TPM, certaines pouvant inadvertamment

exposer des données sensibles en mémoire après utilisation.

Préservation de l'intégrité du démarrage : La capacité de mesure et d'attestation du TPM

permet de détecter efficacement les modifications non autorisées du firmware et des

composants de démarrage. Cette vérification d'intégrité établit une première ligne de

défense contre les bootkits et les rootkits. Il convient cependant de noter que le TPM

détecte mais n'empêche pas l'exécution de code malveillant, il conditionne simplement

l'accès aux données protégées à l'intégrité du système.

Protection conditionnelle des données : Le mécanisme de scellement garantit que les

données sensibles (comme les clés de chiffrement de disque) restent inaccessibles si le

système a été altéré, offrant une protection même en cas de vol physique du dispositif.

Cette protection demeure efficace contre les attaquants disposant de compétences et de

ressources limitées, mais présente des vulnérabilités face aux attaques logiques

exploitant la fenêtre temporelle entre le descellement et l'utilisation des données.

Attestation à distance fiable : Le TPM permet de prouver cryptographiquement l'état

d'intégrité d'un système à un vérificateur distant, facilitant la mise en œuvre de politiques

de sécurité basées sur l'état réel du système plutôt que sur des présomptions de

confiance. Cette capacité reste particulièrement précieuse dans les architectures Zero

Trust, bien qu'elle ne reflète que l'état du système au moment précis de l'attestation.

4.4.2 Faiblesses du TPM 2.0: scénarios de vulnérabilité

Malgré ses capacités, le TPM présente plusieurs limitations fondamentales :

Le TPM offre une résistance limitée face à un attaquant disposant d'un accès physique

prolongé et d'équipements spécialisés. Les attaques par canaux auxiliaires (analyse de

consommation, émissions électromagnétiques), les attaques par injection de fautes, et

l'interception des bus de communication (SPI, LPC) peuvent compromettre son isolation.

Hypothèse d'intégrité initiale non garantie : Le modèle de sécurité du TPM repose sur

l'intégrité du premier code exécuté (CRTM - Core Root of Trust for Measurement). Si ce

composant est compromis avant la première mesure, toute la chaîne de confiance

s'effondre sans possibilité de détection. Des mécanismes comme le DRTM tentent

d'atténuer ce problème en établissant une racine de confiance après le démarrage initial,

mais présentent leurs propres limitations et peuvent être contournés par des attaques

sophistiquées.

Vulnérabilités d’implémentation : Comme l'ont démontré les failles TPM-FAIL et les

vulnérabilités CVE-2023-1017/1018, même un composant de sécurité critique peut

contenir des défauts d'implémentation significatifs qui compromettent son modèle de

sécurité théorique. Ces vulnérabilités, souvent découvertes bien après le déploiement

massif, affectent potentiellement des millions de systèmes et compliquent la mise en

place de correctifs à grande échelle.

45

Protection temporelle limitée : Le TPM ne peut garantir qu'un instantané d'intégrité au

moment de la mesure, créant une fenêtre de vulnérabilité TOCTOU. Un système vérifié

comme intègre peut être compromis immédiatement après l'attestation.

Isolation imparfaite des implémentations non discrètes : Les fTPM et vTPM héritent des

vulnérabilités de leur environnement d'exécution sous-jacent (processeur, hyperviseur),

compromettant potentiellement leur isolation.

Le TPM se révèle particulièrement inefficace dans les scénarios suivants :

1. Attaques avec accès physique : Un attaquant disposant d'équipements spécialisés

(microscopes électroniques, stations de micro-sondage, générateurs d'impulsions

électromagnétiques) peut contourner la plupart des protections du TPM.

2. Compromission précoce de la chaîne de démarrage : Une modification du firmware

avant la première mesure ou une corruption du CRTM annule l'efficacité de toute la

chaîne de confiance, un vecteur particulièrement exploité par les attaques voulant

cibler des infrastructures critiques.

3. Attaques transitives via des périphériques connectés : Les contrôleurs DMA (cartes

réseau, GPU) peuvent contourner les protections logicielles et accéder directement

à la mémoire, y compris aux zones contenant temporairement des clés descellées

par le TPM, même sur des systèmes correctement configurés si l'IOMMU présente

des vulnérabilités.

4. Environnements virtualisés partagés : Dans les infrastructures cloud utilisant des

vTPM, les attaques inter-VM ou les compromissions de l'hyperviseur peuvent

neutraliser l'isolation du TPM virtuel.

5. Gestion de mises à jour : Les modifications normales du système (mises à jour

firmware ou OS) altèrent les valeurs PCR, nécessitant des mécanismes de migration

des données scellées qui créent souvent de nouvelles vulnérabilités.

Cette analyse confirme que le TPM 2.0, malgré ses capacités cryptographiques robustes,

doit être considéré comme un élément nécessaire mais non suffisant d'une architecture

de sécurité défensive en profondeur. Sa valeur réside dans sa contribution à élever

considérablement le niveau de difficulté des attaques, particulièrement celles d'origine

logicielle. Pour certains modèles de menace bien définis et limités, notamment face à des

attaquants sans ressources significatives ou sans accès physique, le TPM peut fournir

des garanties adéquates. Cependant, il ne représente pas une solution ultime face aux

attaquants déterminés disposant de ressources significatives ou d'un accès physique,

même relativement bref.

46

Conclusion

5. Conclusion

Dans le cadre de ce mémoire, nous avons exploré en profondeur les menaces

émergentes ciblant les couches matérielles et firmwares des systèmes informatiques

modernes, avec une analyse comparative spécifique des mécanismes de protection

déployés sur les plateformes x86/x64 et les systèmes embarqués (ARM/RISC-V). Cette

étude s'est particulièrement concentrée sur le Trusted Platform Module 2.0 (TPM 2.0), en

examinant son rôle critique dans la protection des systèmes à bas niveau.

Nous avons d'abord dressé une cartographie des attaques matérielles et firmwares,

soulignant la sophistication croissante des menaces comme les bootkits UEFI, les

injections de fautes, les attaques par canaux auxiliaires et les vulnérabilités liées aux

interfaces matérielles telles que DMA et JTAG. Cette analyse a révélé que les menaces

évoluent constamment et exploitent souvent les limites structurelles des mécanismes de

défense traditionnels.

Notre étude comparative a ensuite permis d'établir les spécificités et les contraintes

inhérentes à chaque catégorie de systèmes. Tandis que les plateformes conventionnelles

bénéficient de ressources matérielles et énergétiques significatives permettant

l’intégration de mécanismes de sécurité avancés comme Secure Boot et TPM discret

(dTPM), les systèmes embarqués doivent composer avec des contraintes strictes,

nécessitant des solutions optimisées telles qu'ARM TrustZone, RISC-V PMP, l’utilisation

des Secure Elements et des enclaves sécurisées.

Le TPM 2.0 s’est avéré être un élément central dans la création d’une chaîne de confiance

robuste, capable de garantir l’intégrité du firmware à travers des mécanismes

cryptographiques solides tels que la mesure d’intégrité et le scellement des données

sensibles. Cependant, nous avons également mis en évidence des vulnérabilités

notables, tant dans les implémentations matérielles que dans les variantes logicielles du

TPM. Des faiblesses d’implémentation aux contournements pratiques via les bus de

communication, ces limitations rappellent l'importance d'une stratégie de défense en

profondeur plutôt que d'une dépendance exclusive à un composant de sécurité unique.

L'évolution rapide des architectures matérielles et l'émergence de nouvelles classes

d'attaques suggèrent plusieurs axes de recherche prometteurs : L'impact de

l'informatique quantique sur les mécanismes de protection actuels, notamment les

primitives cryptographiques du TPM, l'intégration de mécanismes d'intelligence artificielle

pour la détection proactive des attaques matérielles.

47

En conclusion, bien que le TPM 2.0 constitue une avancée significative dans la

sécurisation des systèmes, il ne saurait suffire seul face à la complexité actuelle des

menaces matérielles et firmware. Seule une approche intégrée, adaptative et multicouche

pourra répondre efficacement aux défis sécuritaires de demain, ouvrant ainsi de

nombreuses perspectives pour les recherches futures en cybersécurité matérielle.

48

Glossaire

6. Glossaire

ARM Advanced RISC Machine

BIOS Basic Input/Output System

DMA Direct Memory Access

dTPM discrete Trusted Platform Module

DRTM Dynamic Root of Trust for Measurement

EMFI Electromagnetic Fault Injection

fTPM firmware Trusted Platform Module

I2C Inter-Integrated Circuit

IoT Internet of Things

JTAG Joint Test Action Group

KEK Key Exchange Key

LPC Low Pin Count

MQTT Message Queuing Telemetry Transport

PCR Platform Configuration Register

PK Platform Key

RISC-V Reduced Instruction Set Computer - Five

RoT Root of Trust

SE Secure Element

SoC System On a Chip

SPI Serial Peripheral Interface

TEE Trusted Execution Environment

TOCTOU Time-of-Check to Time-of-Use

TPM Trusted Platform Module

49

UEFI Unified Extensible Firmware Interface

vTPM virtual Trusted Platform Module

50

Références

7. Référence

1. [AutoFirm 2024] YongLe Chen AutoFirm: Automatically Identifying Reused

Libraries inside IoT Firmware at Large-Scale https://arxiv.org/abs/2406.12947

2. [Amacher 2019] Julien Amacher, Valerio Schiavoni. On the Performance of ARM

TrustZone. 19th IFIP Interna tional Conference on Distributed Applications and

Interoperable Systems (DAIS), Jun 2019, Kongens Lyngby, Denmark. pp.133-

151, 10.1007/978-3-030-22496-7_9. hal-02319569 https://inria.hal.science/hal-

02319569v1/document

3. [ANSSI 2019] Agence nationale de la sécurité des systèmes d'information,

Exigences de sécurité matérielle pour plate-forme x86, Version 1.0, 2019.

https://cyber.gouv.fr/sites/default/files/2019/11/anssi-guide-

exigences_securite_materielle.pdf

4. [Arthur 2015] Arthur, W., Challener, D., & Goldman, K., A Practical Guide to TPM

2.0: Using the Trusted Platform Module in the New Age of Security, Apress, 2015.

https://link.springer.com/book/10.1007/978-1-4302-6584-9

5. [Bakhshi 2024] Bakhshi, T., Ghita, B., & Kuzminykh, I., A review of IoT firmware

vulnerabilities and auditing techniques, Sensors 2024, 24, 708

https://www.mdpi.com/1424-8220/24/2/708

6. [Bitdefender 2024] Bitdefender, New side-channel attack targets Intel 13th and

14th gen CPUs https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-

channel-attack-targets-intel-13th-and-14th-gen

7. [Dehbaoui 2012] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Assia

Tria. Electromagnetic Transient Faults Injection on a hardware and software

implementations of AES. FDTC 2012, Sep 2012 https://hal-

emse.ccsd.cnrs.fr/emse-

00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_

on_a_hardware_and_software_implementations_of_AES.pdf

8. Protecting System Firmware Storage https://eclypsium.com/blog/protecting-

system-firmware-storage/, consulté en 2025

9. [Eclypsium 2023] BMC&C: Lights Out Forever

https://eclypsium.com/research/bmcc-lights-out-forever/

10. [ENISA 2023] European Union Agency for Cybersecurity, ENISA Threat

Landscape 2023, 2023.

https://arxiv.org/abs/2406.12947
https://inria.hal.science/hal-02319569v1/document
https://inria.hal.science/hal-02319569v1/document
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-guide-exigences_securite_materielle.pdf
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-guide-exigences_securite_materielle.pdf
https://link.springer.com/book/10.1007/978-1-4302-6584-9
https://www.mdpi.com/1424-8220/24/2/708
https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-channel-attack-targets-intel-13th-and-14th-gen
https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-channel-attack-targets-intel-13th-and-14th-gen
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://eclypsium.com/blog/protecting-system-firmware-storage/
https://eclypsium.com/blog/protecting-system-firmware-storage/
https://eclypsium.com/research/bmcc-lights-out-forever/

51

 https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%2

0Landscape%202023.pdf

11. [ESET 2018] ESET Research, LoJax: First UEFI rootkit found in the wild, courtesy

of the Sednit group, 2018. https://web-assets.esetstatic.com/wls/2018/09/Eset-

LoJax.pdf

12. [ESET 2024] ESET, UEFI Secure Boot bypass vulnerability, 2024.

https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-

UEFI-Secure-Boot-bypass-vulnerability

13. [Falcon 2023] Vulnerabilities in the TPM 2.0 reference implementation code, 2023

https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-

implementation-code.html

14. [Forgette 2022] Forgette, B., TPM is not the holy way, 2022.

https://www.sstic.org/media/SSTIC2022/SSTIC-

actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-

forgette_7RUa27n.pdf

15. [Frigo 2020] Frigo, P, TRRespass: Exploiting the Many Sides of Target Row

Refresh, 2020. https://download.vusec.net/papers/trrespass_sp20.pdf

16. [ISO 2015] ISO/IEC 11889:2015, Information technology — Trusted platform

module library. https://trustedcomputinggroup.org/resource/tpm-library-

specification/

17. [Jattke 2022] Jattke, P., Van Der Veen, V., Frigo, P., Gunter, S., & Razavi, K.,

BLACKSMITH: Scalable Rowhammering in the Frequency Domain, 2022.

https://doi.org/10.1109/SP46214.2022.9833772

18. [Jerinsunny 2024] Jerin Sunny, STM32 VGlitch – Voltage Fault Injection on

STM32, https://jerinsunny.github.io/stm32_vglitch/

19. [Kocher 1996] Kocher P, Timing Attacks on Implementat ions of Diffie-Hellman,

RSA, DSS, and Other Systems, 1996

https://link.springer.com/chapter/10.1007/3-540-68697-5_9

20. [Kim 2014] Kim, Y., Daly, R., Kim, J., et al., Flipping Bits in Memory Without

Accessing Them: An Experimental Study of DRAM Disturbance Errors, ISCA,

Juin 2014. https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

21. [Matrosov 2019] Matrosov, A., Rodionov, E., & Bratus, S., Rootkits and Bootkits:

Reversing Modern Malware and Next Generation Threats, No Starch Press,

2019. https://nostarch.com/rootkits

22. [Meltdown 2018] Moritz Lipp, Michael Schwarz, Daniel Gruss Meltdown: Reading

Kernel Memory from User Space https://meltdownattack.com/meltdown.pdf

23. [Mitchell 2022] Robin Mitchell, 33 Critical Vulnerabilities Found in Popular IoT

Protocol MQTT https://www.electropages.com/blog/2022/02/researchers-find-

mqtt-have-33-vulnerabilities

24. [MITRE 2025] MITRE Corporation, Technique T1542: Pre-OS Boot, ATT&CK

Framework. https://attack.mitre.org/techniques/T1542/

25. [NIST 2018] NIST, SP 800-193 - Platform Firmware Resiliency Guidelines, 2018.

https://csrc.nist.gov/pubs/sp/800/193/final

https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%20Landscape%202023.pdf
https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%20Landscape%202023.pdf
https://web-assets.esetstatic.com/wls/2018/09/Eset-LoJax.pdf
https://web-assets.esetstatic.com/wls/2018/09/Eset-LoJax.pdf
https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-UEFI-Secure-Boot-bypass-vulnerability
https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-UEFI-Secure-Boot-bypass-vulnerability
https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-implementation-code.html
https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-implementation-code.html
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://download.vusec.net/papers/trrespass_sp20.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1109/SP46214.2022.9833772
https://jerinsunny.github.io/stm32_vglitch/
https://link.springer.com/chapter/10.1007/3-540-68697-5_9
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://nostarch.com/rootkits
https://meltdownattack.com/meltdown.pdf
https://www.electropages.com/blog/2022/02/researchers-find-mqtt-have-33-vulnerabilities
https://www.electropages.com/blog/2022/02/researchers-find-mqtt-have-33-vulnerabilities
https://attack.mitre.org/techniques/T1542/
https://csrc.nist.gov/pubs/sp/800/193/final

52

26. [Raj 2016] Raj, H., Saroiu, S., Wolman, A., et al., fTPM: A software-only

implementation of a TPM chip, USENIX Security Symposium, Août 2016.

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_r

aj.pdf

27. [RISC-V 2025], RISC-V Physical Memory Protection (PMP) documentation

https://sifive.github.io/freedom-metal-docs/devguide/pmps.html

28. [Spectre 2019] Paul Kocher, Spectre Attacks: Exploiting Speculative Execution

https://spectreattack.com/spectre.pdf

29. [Chifflier 2019] SSTIC, UEFI et bootkits PCI : étude de cas, 2019.

https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-

bootkits_sstic_article_fr.pdf

30. [Thunderbolt 2020] Thunderbolt Flaws Expose Millions of PCs to Hands-On

Hacking, consulté en 2025 https://www.wired.com/story/thunderspy-thunderbolt-

evil-maid-hacking/

31. [TPM-FAIL 2020] TPM-FAIL : TPM meets Timing and Lattice Attacks, Daniel

Moghimi and Berk Sunar and Thomas Eisenbarth and Nadia Heninger, 2020

https://tpm.fail/

32. [TPMScan 2024] Petr Svenda, Antonin Dufka, Milan Broz, Roman Lacko, Tomas

Jaros, Daniel Zatovicand Josef Pospisil TPMScan: A wide-scale study of security-

relevant properties of TPM 2.0 chips

https://www.researchgate.net/publication/378944595_TPMScan_A_wide-

scale_study_of_security-relevant_properties_of_TPM_20_chips

33. [Xeno] Xeno Kovah, BIOS and SMM Internals – SPI Flash Protection

Mechanisms, OpenSecurityTraining.

https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%2

0-%20BIOS%20and%20SMM%20Internals%20-

%20SPI%20Flash%20Protection%20Mechanisms.pdf

34. Wikipedia, Élément sécurisé, consulté en 2025

https://fr.wikipedia.org/wiki/%C3%89l%C3%A9ment_s%C3%A9curis%C3%A9

35. [Vishwakarma 2018] Vishwakarma, G., Exploiting JTAG and Its Mitigation in IOT:

A Survey https://www.mdpi.com/1999-5903/10/12/121

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://sifive.github.io/freedom-metal-docs/devguide/pmps.html
https://spectreattack.com/spectre.pdf
https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-bootkits_sstic_article_fr.pdf
https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-bootkits_sstic_article_fr.pdf
https://www.wired.com/story/thunderspy-thunderbolt-evil-maid-hacking/
https://www.wired.com/story/thunderspy-thunderbolt-evil-maid-hacking/
https://tpm.fail/
https://www.researchgate.net/publication/378944595_TPMScan_A_wide-scale_study_of_security-relevant_properties_of_TPM_20_chips
https://www.researchgate.net/publication/378944595_TPMScan_A_wide-scale_study_of_security-relevant_properties_of_TPM_20_chips
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://fr.wikipedia.org/wiki/%C3%89l%C3%A9ment_s%C3%A9curis%C3%A9
https://www.mdpi.com/1999-5903/10/12/121

