=l / U . .tl
afia 7, W g

Master 2 — Cybersécurité — Année 2024/2025

Seécurite materielle et
protection des firmwares
menaces de bas niveau et
architectures de défense

Etude de I'utilisation combinée du TPM
2.0, du Secure Boot et de protections
hardware pour garantir lintégrité du

firmware
Ivan KRIVOKUCA

Maitre d’apprentissage : Monsieur Luc BOUGANIM
Tuteur enseignant : Professeur Patrice MARTIN
Président du jury : Professeur Osman SALEM
Etablissement : Université Paris Cité

Entreprise : INRIA



Remerciement

Je souhaite tout d'abord remercier mon tuteur enseignent Patrice MARTIN, pour sa
disponibilité, ses conseils avisés et son accompagnement tout au long de ce mémoire.

Ma reconnaissance va également a mon maitre d'apprentissage Luc BOUGANIM, qui
m'a accueilli au sein de I'INRIA et plus particulierement dans I'équipe de recherche
PETRUS et qui m'a offert I'opportunité d'appliquer mes connaissances dans un contexte
professionnel stimulant.

Je tiens a remercier chaleureusement I'ensemble de I'équipe PETRUS pour leur accueil,
leur patience et leur bienveillance. Travailler a leurs cotés a été une expérience aussi
enrichissante sur le plan professionnel qu'humain.

Mes remerciements s'adressent également a I'équipe pédagogique de I'Université Paris
Cité pour la qualité de leur enseignement et leur accompagnement tout au long de ce
master.

Enfin, je ne saurais oublier ma famille et mes amis pour leur soutien inconditionnel et leurs
encouragements constants.

A toutes ces personnes qui ont contribué & faire de ces deux années une expérience
aussi formatrice qu'épanouissante, je tiens a exprimer ma plus profonde gratitude



Résumeé

Ce mémoire examine |'évolution des cyberattaques ciblant les couches basses des
systemes informatiques et analyse comparativement les mécanismes de protection
déployés sur les plateformes x86/x64 et les systémes embarqués (ARM/RISC-V), avec
un focus particulier sur le Trusted Platform Module 2.0 (TPM 2.0).

Notre étude établit que la sécurité informatique, historiquement concentrée sur les
couches logicielles supérieures, révéle ses limites face a I'émergence d'attaques visant
le firmware et le matériel. L'analyse des menaces démontre une évolution vers des
techniques d'exploitation persistantes et furtives, telles que les rootkits UEFI, les bootkits
contournant le Secure Boot, les attaques par corruption mémoire, les injections de fautes
matérielles, et les exploitations d'interfaces. Pour les systémes embarqués et loT, nous
identifions des vulnérabilités spécifiques liées aux contraintes énergétiques et aux
longues durées de vie opérationnelle de ces appareils.

Notre analyse comparative des architectures de protection révéle des différences entre
ces dites plateformes. Les systémes x86/x64 privilégient des solutions comme le Secure
Boot, des sécurités intégrées en plus dans les processeurs, et l'intégration du TPM sous
diverses formes (dTPM, fTPM, vTPM). Les systémes embarqués adoptent des approches
adaptées a leurs contraintes, avec des architectures spécifiques. Sans oublier I'ajout des
Secure Elements et enclaves sécurisées. Ces mécanismes s'articulent autour de
principes fondamentaux : racines de confiance matérielles et isolation des
environnements d'exécution.

L'étude approfondie du TPM 2.0 met en lumiére son rdle central dans la sécurisation du
processus de démarrage et la protection des données sensibles via ses fonctionnalités
de mesure d'intégrité, d'attestation et de scellement cryptographique. Cependant, notre
analyse critique identifie des vulnérabilités significatives : faiblesses d'implémentation,
attaques par canaux auxiliaires et contournements pratiques. Ces limitations remettent
en question l'efficacité du TPM comme solution unique de protection.

Ce travail conclut que malgré I'importance du TPM 2.0 dans I'établissement d'une chaine
de confiance, aucun mécanisme isolé ne peut garantir une sécurité compléte face a
I'évolution rapide des menaces.



Table des matieres

1.

Introduction
1.1 Contexte et motivations
1.2 Problématique et objectifs

1.2.1  Problématique
1.2.2  Objectifs

Etat de I'art des menaces matérielles et firmware
2.1 Attaques sur le firmware
2.11  Attaques sur 'UEFI/BIOS
2.1.2  Bootkits
2.2 Attagues sur les composants matériels
2.2.1  Attaque sur la mémoire
2.2.2  Attagues par injection de fautes
2.2.3  Attaques sur les périphérique et interfaces
2.3 Attaques par canaux auxiliaires
2.4 Menaces systemes embarqués et |IOT
2.4.1  Chaine d’approvisionnement : du silicium au firmware
2.4.2 Vulnérabilités liées au cycle de vie et a la maintenance
2.4.3 Fallles protocolaires, configuration et attaques sur les ressources
Architectures de protection matérielle
3.1 Principes fondamentaux de défense
3.1.1  Racines de confiance matérielles
3.1.2  Chaines de confiance et attestation
3.1.3 Isolation et cloisonnement
3.2 Technologies de sécurité matérielle pour systémes x86/x64
3.2.1  Secure Boot et UEFI protégé
3.2.2  Trusted Platform Module : variantes et vulnérabilités
3.3 Solutions pour systemes embarqués

3.3.1 ARM TrustZone / RISC-V PMP

O 0 00 00 N N

10
10
14
16
16
17
18
20
21
21
21
22
24

24
25
25
26
27
27
28
29
29



3.3.2  Secure Elements et enclaves sécurisées
3.3.3  Synergie entre Secure Element et enclave
3.4 Analyse comparative des solutions
4. Le TPM 2.0 comme élément central de protection
4.1 Architecture et fonctionnalités du TPM 2.0
4.1.1 Composants et opérations fondamentales
4.1.2 Modéle de sécurité
4.2 Cas d'usage de protection avec TPM
4.2.1  Protection de l'intégrité du firmware
4.2.2  Attestation de I'état systeme
4.2.3 Scellement de données sensibles
4.3 Limites et vulnérabilités connues
4.3.1 Faiblesses d'implémentation
4.3.2  Contournements pratiques
4.4 Synthése critique des forces et faiblesses du TPM 2.0
4.4.1 Forces du TPM 2.0: contextes d'efficacité
4.4.2 Faiblesses du TPM 2.0: scénarios de vulnérabilité

6. Conclusion
7. Glossaire

8. Reéférence

30
31
32
34

34
34
36
37
37
38
39
41
41
42
43
43
44
46

48
50



Liste des figures

Figure 1 - Flux du processus de démarrage systéme et cibles potentielles d'attaques 12

Figure 2 - Démarrage UEFI standard de Windows vs séquence de démarrage modifiée par

ESPecter 15
Figure 3 - Surface d'attaque 10T 23
Figure 4 - La vision de ARM sur lisolation et le cloisonnement 26
Figure 5 - Architecture interne d'un TPM 2.0 35

Figure 6 - Diagramme d'attestation avec le TPM : Flux de communication entre le systéme attesté
(Attestor) et le vérificateur (Verifier) montrant les étapes de challenge, signature et vérification
39

Figure 7 - Processus de scellement/descellement TPM - (a) Création d'un objet scellé avec une
politique d'autorisation - (b) Descellement conditionnel des données aprés vérification de la
politique et de I'état du systéme 40



Introduction

1. Introduction

1.1 Contexte et motivations

La sécurité des systemes informatiques a longtemps été abordée principalement comme
une problématique logicielle, ou les mécanismes de protection s'appuient essentiellement
sur les couches supérieures (applications, systémes d'exploitation). Cette approche, bien
gu’ayant démontré son efficacité pour contrer certaines catégories de menaces, elle
révéle aujourd'hui ses limites face a I'évolution rapide et continue des cyberattaques, qui
ciblent désormais les couches les plus profondes des systémes. L'ENISA (European
Union Agency for Cybersecurity) a souligné dans ses rapports annuels sur les menaces
du monde de la cybersécurité, cette évolution vers des attaques plus sophistiquées visant
les couches basses des systémes [ENISA 2023].

Longtemps ignorées ou sous-estimées, les firmwares, interfaces critiques situées entre
le matériel et le logiciel, constitue un vecteur d'attaque privilégié par les acteurs
malveillants. Un firmware compromis offre aux attaquants un contréle quasi-complet du
systéme, avec une capacité d’attaque ou les mécanismes de protection logiciels et les
tentatives de suppression standard sont inefficaces. Des cas emblématiques comme celui
du rootkit UEFI (Unified Extensible Firmware Interface) LoJax, documenté par les
chercheurs d'ESET en 2018, ont démontré la faisabilité d'implants malveillants persistants
capables de survivre aux réinstallations complétes du systéme d'exploitation [ESET
2018]. Cette menace s'avere particulierement critique pour les systémes embarqués qui,
soumis a des contraintes strictes en matiére d'énergie et de ressources, se trouvent
fréquemment dépourvus de protections contre ces attaques de bas niveau.

Face a ce changement notable du paysage des menaces informatiques, la sécurité
matérielle émerge comme un impératif stratégique incontournable. L'approche dite de
sécurité par conception (« Security by Design »), intégrant des mécanismes de
protections matériels et logiciels, devenant essentielle pour établir une racine de
confiance (« Root of Trust ») capable de garantir I'intégrité et la résilience globale du
systeme. Le NIST (National Institute of Standards and Technology) a formalisé cette
approche dans sa publication 800-193 « Platform Firmware Resiliency Guidelines » [NIST
2018]. Ce document fournit des recommandations techniques pour renforcer la résilience
du firmware contre les attaques potentiellement destructrices. Dans le méme esprit,
L'Agence Nationale de Sécurité des Systémes d'Information (ANSSI) a publié ses
recommandations relatives a la sécurité matérielle sur plateformes x86 [ANSSI 2019]. Ce



guide présente des exigences de sécurité s'appliquant aux dispositifs matériels,
préconisant notamment l'implémentation systématique d'un TPM (Trusted Platform
Module) version 2.0, la configuration du BIOS/UEFI en mode Secure Boot, ainsi que le
déploiement de mécanismes avancés de journalisation et d'audit du firmware.

L'adoption massive du TPM 2.0 (standardisé par la norme internationale ISO/IEC
11889:2015), désormais imposé par Microsoft comme matériel obligatoire pour installer
son dernier systéme d’exploitation Windows, semble représenter une avancée majeure
dans le domaine de la sécurité matérielle.

1.2 Problématique et objectifs

1.2.1 Problématique

La multiplication des attaques de bas niveau visant le firmware, qu'il s’agisse du
Basic Input Output System (BIOS) historique ou, plus récemment, de 'UEFI, remet en
cause I'hypothése présupposé d’'un matériel implicitement fiable. La vérification d'intégrité
de ce code de bas niveau doit pouvoir s’appuyer sur un composant, créant ainsi une
premiére vulnérabilité structurelle.

Cette problématique s'accentue lorsqu'on compare les systémes généralistes aux
architectures embarquées. Les premiers, dominés par I'écosystéme x86/64, bénéficient
de ressources matérielles conséquentes permettant l'intégration de mécanismes de
protection (virtualisation matérielle, environnement d’exécution isolée). A l'inverse, les
dispositifs embarqués (loT, objets connectés) fondés principalement sur des architectures
ARM ou RISC-V doivent concilier sécurité et contraintes strictes (consommation
énergétique, mémoire limitée, et I'environnement ou le systéme est utilisé). Ces
différences imposent des stratégies de protection différentes, adaptées aux spécificités
et aux limitations propres a chaque plateforme.

Le TPM 2.0 se présente comme un composant pivot pour ancrer la confiance, assurant
une attestation de I'état systéme actuelle. Cependant, ses différentes formes, TPM discret
(dTPM), TPM firmware (fTPM), TPM virtuel (vTPM), introduisent chacune des hypothéses
de menace différentes : le dTPM, bien qu'isolé physiquement, expose une surface
d'attaque matérielle via ses bus de communication (ex. interception de signaux sur puce),
tandis que les implémentations logicielles (vTPM) soulévent des questions
fondamentales quant a leur isolation. Ces différentes implémentations et leurs
implications sécuritaires seront analysées en détail dans la section 3.2.2.

1.2.2 Objectifs

Compte tenu de la complexité croissante des attaques bas niveau sur les firmwares et
les architectures matérielles, ce mémoire se concentre sur une analyse approfondie des
vulnérabilités associées et des mécanismes de défense qui en découlent.

Le premier objectif vise a dresser un panorama détaillé des vulnérabilités spécifiques aux
firmwares et aux composants matériels des plateformes conventionnelles (x86/x64) et
des systémes embarqués (ARM, RISC-V). Cette démarche analytique permettra



d'identifier précisément les vecteurs d'attaque privilégiés selon les spécificités
architecturales. Seront particulierement étudiées les attaques ciblant ['intégrité du
firmware (notamment via 'UEFI), les injections de fautes matérielles, les exploitations des
interfaces critiques (DMA, JTAG, SPI) et les attaques par canaux auxiliaires (side-
channel).

Le second objectif, central a notre analyse, concerne I'évaluation critique du TPM 2.0 en
tant qu'élément fondamental de protection des systémes modernes. Nous comparerons
les différentes variantes d'implémentation du TPM (dTPM, fTPM, vTPM) en examinant
leur efficacité face aux vecteurs d’attaques identifiés précédemment. Cette comparaison
reposera sur une analyse détaillée des spécifications techniques publiées par le Trusted
Computing Group et des vulnérabilités récentes documentées, notamment les failles
cryptographiques, les attaques temporelles et les faiblesses d'implémentation spécifiques
révélées par la communauté scientifique. Une attention particuliere sera portée aux
contraintes techniques et opérationnelles propres a chaque type de plateforme,
permettant ainsi d’établir un cadre comparatif, visant a déterminer la pertinence des
différentes implémentations du TPM.

Enfin, a titre exploratoire, ce mémoire propose une réflexion sur les architectures de
sécurité matérielle. En s’appuyant sur les principes fondamentaux des racines de
confiance matérielles et des enclaves sécurisées, nous examinerons les possibilités
offertes par I'intégration synergique de ces technologies au sein d'architectures hybrides.



Etat de I'art des menaces
matérielles et firmware

2.Etat de l'art des menaces matérielles et
firmware

2.1 Attaques sur le firmware

Le firmware désigne un programme intégré directement dans un composant électronique
(processeur, microcontrdleur, puce dédiée, périphérique) qui contrdle son fonctionnement
fondamental et persiste généralement pendant toute la durée de vie du matériel.
Contrairement aux logiciels traditionnels, il n'est pas destiné a étre modifié fréquemment
et fonctionne a l'interface directe entre matériel et logiciel. Cette section présente les
principales menaces ciblant les couches basses des systémes informatique, qui peuvent
étre classé en fonction des cibles qu’elles vissent.

Dans le contexte spécifique du démarrage systéme que nous analysons ici, le firmware
UEFI/BIOS constitue la premiére séquence de code exécutée lors de l'initialisation d'un
ordinateur.

2.1.1 Attaques sur 'UEFI/BIOS

L'UEFI et le BIOS constituent l'interface fondamentale entre le matériel informatique et le
systéme d'exploitation. Bien que I'UEFI soit souvent présenté comme le successeur du
BIOS, il est important de noter que 'UEFI moderne intégre généralement un mode de
compatibilité (mode legacy) permettant d'émuler le fonctionnement d'un BIOS traditionnel
pour assurer la rétrocompatibilité avec les systémes d'exploitation plus anciens. Leurs
réles dans linitialisation du matériel et le transfert du contréle au noyau OS en fait des
composants critique dans la chaine de confiance du systéme.

Le BIOS (Basic Input/Output System), développé au début des années 1980, reposait sur
une architecture limitée en mode réel 16 bits. Le mode réel 16 bits, dans lequel opérait
initialement le BIOS, offrait un accés direct a la mémoire et aux périphériques. La
limitation a 1 Mo d'espace adressable n'était pas intrinséque au BIOS lui-méme, mais
résultait de I'architecture des premiers processeurs x86 et des contraintes de
rétrocompatibilité maintenues au fil des évolutions. En réalité, méme en environnement
BIOS, le processeur pouvait basculer en mode ou en mode long (a partir des architectures

10



x86-64), permettant I'accés a davantage de mémoire et I'activation de mécanismes de
protection. Cependant, la structure unifiée et rigide du BIOS traditionnel limitait
effectivement sa modularité comparée a I'UEFI.

Le démarrage BIOS, commence par un Power-On Reset (POR) puis un POST (Power-
On Self-Test) qui vérifie et initialise le processeur, la RAM et les périphériques (contréleurs
de clavier, affichage, ...).

Le processus POST comprend plusieurs étapes techniques :

o Vérification : Test diagnostique des composants critiques (CPU, mémoire,
contréleurs), détection d'erreurs matérielles via des routines de test
standardisées, et validation de l'intégrité des ressources systéme (sommes de
contréle).

e Initialisation : Configuration des registres CPU aux valeurs par défaut,
établissement des tables d'interruption, configuration initiale des contrbleurs
(chipset, DMA, PIC), et amorgage des sous-systémes mémoire avec leurs
paramétres fondamentaux.

Ce processus établit I'environnement de base nécessaire au chargement et a I'exécution
des composants logiciels de plus haut niveau.

Le BIOS configure ensuite le matériel, construit sa table de périphériques et expose des
services via des interruptions. Il recherche enfin le Master Boot Record sur le premier
périphérique de démarrage configuré, charge ce secteur en mémoire et lui transfére
'exécution.

A partir de 2005, le standard UEF| (Unified Extensible Firmware Interface) a introduit une
refonte compléte du micrologiciel d’amorgage, structurée autour d’'une architecture
modulaire et avec I'ajout de mécanismes de sécurité :

e Un environnement d'exécution en mode protégé (32 bits) ou long (64 bits),
permettant I'accés a toute la mémoire, ainsi que de la protection mémoire

e Une architecture modulaire basée sur des pilotes et applications indépendants

e Une partition systtme dédiée (ESP - EFI System Partition) pour stocker les
chargeurs d’amorgage, garantissant une séparation entre firmware et systéme
d’exploitation

e Prise en charge native de protocoles réseau

¢ Des mécanismes de sécurité comme le Secure Boot

Le processus de démarrage UEFI suit plusieurs phases séquentielles distinctes :

SEC (Security) : Phase initiale vérification de I'authenticité du firmware
PEI (Pre-EFI Initialization) : Initialisation minimale du matériel

DXE (Driver Execution Environment) : Chargement des pilotes principaux
BDS (Boot Device Selection) : Sélection du périphérique de démarrage
TSL (Transient System Load) : Chargement du systeme d'exploitation

ok wbd -

Ces nouvelles caractéristiques architecturales, tout en apportant des améliorations
fonctionnelles significatives, modifient indirectement la surface d'attaque. La Figure 1

11



illustre le flux du processus de démarrage et les points d'intervention potentiels pour les
attaquants.

: CPU in real mode CPU in protected mode :
| 1
I BIOS Boot Full kernel First user- 1
: initialization Ll Bl loader initialization mode process :
| 1
I I
| i
[ Early kernel 1
: initialization '
| 1
| 1
: BIOS zervices Kernel services :
[ 1
e s e ———
I I

Figure 1 - Flux du processus de démarrage systeme et cibles potentielles d'attaques (source :
Rootkits and Bootkits — p58)

Ainsi, cette modernisation a paradoxalement introduit de nouveaux vecteurs d'attaque,
qui peuvent étre catégorisé selon plusieurs approches.

La modification directe de la mémoire flash SPI (Serial Peripheral Interface) constitue
I'approche la plus fondamentale pour compromettre le firmware. La puce flash SPI,
généralement soudée directement sur la carte mére a proximité du chipset, stocke
l'intégralité du code UEFI/BIOS et constitue donc une cible privilégiée. Cette puce SPI
contient généralement 8-16 Mo de mémoire flash organisée en régions distinctes
(descripteur, ME, BIOS) avec différents niveaux de protection.

L'attaquant doit [Xeno] :

Elever ses privileges pour obtenir un accés kernel/ring-0

Désactiver le bit BIOSWE (BIOS Write Enable) dans le registre BIOS_CNTL
Neutraliser la protection BLE (BIOS Lock Enable)

Manipuler les registres Protected Range (PR0-PR4) pour autoriser I'écriture
Utiliser des opérations d'E/S directes pour écrire le code malveillant

ok~

Comme on peut le voir sur le chemin d’attaque, des protections sont implémentées par
les fabricants, que I'attaquant doit franchir successivement [Xeno] :

e Le verrouillage logiciel du BIOS via son interface de configuration

e Les bits de protection du registre BIOS_CNTL, contrélés par le chipset, qui
empéchent les écritures non autorisées sur la puce flash

e Les mécanismes de protection en écriture du SPI lui-méme, notamment le
registre de statut FLOCKDN (Flash Configuration Lock-Down) qui, une fois
activé, bloque toute modification des registres de configuration jusqu'au prochain
redémarrage matériel

e La restriction d'acces aux plages d'adresses SPI via les registres Protected
Range (PR0O-PR4) qui définissent des régions en lecture seule

12



L'UEFI, contrairement au BIOS, adopte une conception modulaire ou différents
composants fonctionnels sont implémentés sous forme de pilotes et modules distincts.
Cette architecture s'apparente a un mini-systéme d'exploitation temps réel, avec ses
propres protocoles de communication inter-modules, ses services systéme et son modéle
de pilotes extensible. Alors que le BIOS traditionnel se présente comme un unique bloc
de code enchainant toutes ses instructions de maniére strictement linéaire, 'UEFI opére
plus comme un environnement d'exécution complet, capable de charger dynamiquement
des modules, d'exposer des interfaces de programmation (API) standardisées, et de
maintenir un état cohérent entre ses différents composants.

Cette modularité, bien qu'avantageuse pour la maintenance et I'évolutivité, élargit la
surface d'attaque en multipliant les points d'intervention potentiels. Les attaquants
peuvent cibler des modules spécifiques, particulierement ceux exécutés en phase DXE,
qui offrent un contexte d'exécution privilégié et constituent un point d'entrée vers les
couches inférieures du systéme.

Une troisieme catégorie d'attaques cible spécifiquement plus largement la manipulation
de I'ensemble des variables d’environnement de 'UEFI. Ces variables, stockées dans
une mémoire non volatile (NVRAM) accessible au firmware, configurent divers aspects
du comportement du systéme durant et aprés la séquence d'amorcage. Leur modification
peut altérer fondamentalement la trajectoire d'exécution du systéme sans nécessiter la
modification directe du code firmware, en modifiant par exemple les variables contrélant
I'ordre de démarrage ou en désactivant sélectivement des mécanismes de sécurité.

Le cas LoJax, documenté par ESET en 2018 [ESET 2018], représente la premiére
documentation publique d'un rootkit UEFI déployé dans des opérations offensives réelles.
Cette opération, attribuée au groupe APT28 (également connu sous les noms Fancy Bear
ou Sednit), illustre parfaitement le commencement des attaques ciblant le firmware UEFI.

L'attaque exploitait une fonctionnalité présente dans 'UEFI : LoJack, un logiciel antivol
préinstallé par de nombreux fabricants d’ordinateur portable.

Le processus d'infection se déroulait de cette maniére :

1. Déploiement initial via des documents malveillants (typiquement des fichiers Word
avec macros malveillantes) ciblant le systéme d'exploitation Windows de la victime,
permettant l'installation un logiciel malveillant initial avec des priviléges utilisateur
standard, servant de point d'entrée pour les étapes suivantes de l'attaque

2. Elévation des priviléges via I'exploitation de vulnérabilités systéme (comme CVE-
2018-8120) pour obtenir des droits SYSTEM nécessaires aux opérations de bas
niveau

3. Utilisation d'un pilote signé légitime mais détourné, nommé « RwDrv.sys » (issu de
l'outil RWEverything), pour accéder directement aux registres matériels et a la
mémoire SPI

4. Contournement des protections en écriture du firmware en manipulant les registres
de contréle du SPI, notamment en désactivant le bit BIOSWE (BIOS Write Enable) et
en neutralisant la protection BIOS Lock Enable (BLE)

13



5. Installation d'un pilote UEFI malveillant directement dans la mémoire flash SPI, en
ciblant spécifiquement la phase DXE (Driver Execution Environment) de I'UEFI pour
garantir son chargement a chaque démarrage

6. Configuration d'un mécanisme garantissant le chargement d'un agent malveillant lors
du démarrage du systéme d'exploitation via I'ajout d'entrées dans les variables UEFI
persistantes

La persistance de cet implant s'explique par sa localisation dans la mémoire flash SPI
physique, distincte et indépendante des supports de stockage de masse (disques durs,
SSD) ou réside le systéme d'exploitation. Contrairement aux malwares traditionnels
stockés sur le disque systéme, un rootkit UEFI comme LoJax réside dans une puce
dédiée sur la carte mére elle-méme, expliquant pourquoi méme le remplacement du
disque dur ne permet pas d'éliminer l'infection. Seule une reprogrammation compléte de
la mémoire flash SPI (reflashage) peut éradiquer ce type d'implant.

2.1.2 Bootkits

Les bootkits représentent une classe de logiciels malveillants qui infectent les premiéres
phases du processus de démarrage systeme, avant méme que le systeme d'exploitation
ne soit complétement chargé. Comme I'explique Matrosov, ces attaques ont connu une
évolution significative passant des premiers virus de secteur d'amorgage (Boot Sector
Infectors - BSI) aux attaques ciblant aujourd’hui les environnements UEFI. [Matrosov
2019]

Les origines de ces attaques remontent au développement des systémes informatiques
pré-IBM PC. Le programme Creeper (1971), considéré comme le premier logiciel
autoréplicatif opérant en mode noyau, est souvent cité comme l'ancétre des bootkits
modernes. Les premiéres générations, telles que le PoC eEye BootRoot, présenté au
Black Hat en 2005, se concentraient sur la compromission du Master Boot Record (MBR),
exploitant sa position centrale dans I'architecture x86 pour persister hors de portée des
mécanismes de détection du systéme d'exploitation.

Les bootkits ont connu une évolution parallélement a I'architecture de démarrage des
systemes. Les bootkits MBR, premiere génération, modifient les 512 premiers octets du
disque et détournent le flux de contrdle vers un code malveillant stocké dans des secteurs
cachés. Les bootkits VBR (Volume Boot Record) constituent la deuxiéme génération,
particuliérement efficaces contre les systémes multi-volumes en ciblant le secteur
d'amorcage de chaque partition. Avec l'avénement de I'UEFI, les bootkits comme
ESPecter manipulent désormais la partition systeme EFI (ESP) en remplagant ou en
interceptant le bootloader légitime. La derniére génération, représentée par les bootkits
anti-Secure Boot, exploite des vulnérabilités spécifiques comme CVE-2022-21894 pour
contourner les vérifications cryptographiques de signature, fondement méme de la
protection Secure Boot.

Ces stratégies d’attaques peuvent étre classifiées en quatre groupes distincts :

e Instrumentalisation des mécanismes légitimes : utilisation des fonctionnalités
intégrées au systéme d’exploitation (ex. désactivation temporaire de la

14



vérification de signature via des commandes spécifiques), souvent en exploitant
des vulnérabilités dans les outils de diagnostic ou de test.

e Exploitation de failles systeme : ciblage de vulnérabilités critiques dans le noyau
ou dans des pilotes signés, permettant I'exécution arbitraire de code non
authentifié.

e Attaques sur le chargeur d'amorgage : modification du bootloader pour modifier
le noyau et désactiver les vérifications de sécurité avant leur initialisation.

¢ Infection du firmware

based on the NVRAM variables

Hooked Entry Point of the bootmgfw.efi
is executed instead of legitimate bootmgfiw.efi

entry point
UEFI Firmware
ESPocter inital code
Execute Boot application fi” section in the bootmgfw.efi
based on the NVRAM variables
v .
o 2 Patch BmFw\VerifySelfintegrity
Windows Boot Manager E:frfu;;:«”g gl Hook Archpx64TransferTobdBitApplicationAsm
(bootmgfw.efi)
Windows Boot Manager
Transfer execution to OS loader using (bootmgfw.efi)
Archpx64 itApplicati
forkxanieied Sinchons) Transfer execution to OS loader using
Windows O loadet Archpx64TransferTo64BitApplicationAsm
(winload efi)
Transfer execution from OS Loader to OS Kemel hooked_Archpx64TransferTo64BitApplicationAsm
using OslArchTransferToKerel
Reallocate ESPecter code
before it gets unloaded
Windows Kemel Hook OslArchTransferToKemel
(ntoskrnl exe)
Windows OS loader
(winload ef)

Transfer execution from OS Loader to OS Kernel
using OslArchTransferToKernel

hooked_OslArchTransferToKemel

Patch SeplinitializeCodelntegrity
Patch MiComputeDriverProtection
Hook CmGetSystemDriverList

Windows Kerel
(ntoskml.exe)

hooked_CmGetSystemDriverList

Drop kemel driver and configuration

Figure 2 - Démarrage UEFI standard de Windows vs séquence de démarrage modifiée par
ESPecter (https.//www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-
windows-devices-since-2012/)

En 2023, le bootkit BlackLotus est apparu comme le premier bootkit UEFI capable de
contourner la protection Secure Boot sur des systémes Windows entiérement a jour,
exploitant une vulnérabilité connue (CVE-2022-21894) pour s'installer. BlackLotus
fonctionne en exploitant une vulnérabilité dans le processus de démarrage Windows pour
charger des fichiers DLLs et EXEs non signés malgré Secure Boot. Il utilise une technique
de "bootkit remapping" qui intercepte les appels systémes au niveau du bootloader avant
que les mécanismes de protection de I'OS ne soient actifs.

Plus récemment, en 2024, la découverte de Bootkitty, le premier bootkit UEFI ciblant
spécifiquement les systémes Linux, marquant ainsi I'extension de cette menace au-dela
de I'écosystéme Windows.

15


https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/
https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/

2.2 Attaques sur les composants matériels

Les composants matériels des systemes informatiques constituent un vecteur d'attaque
fondamental pour les acteurs malveillants cherchant a compromettre la sécurité des
systemes. Contrairement aux vulnérabilités purement logicielles qui peuvent étre
corrigées par des mises a jour de firmware ou de systéme d'exploitation, les failles
fondamentales dans l'architecture matérielle elle-méme (comme les défauts de
conception des circuits intégrés) demeurent généralement exploitables pendant toute la
durée de vie du composant. Ces vulnérabilités, telles que Spectre, Meltdown ou
Rowhammer, ne peuvent étre véritablement éliminées que par une refonte du silicium et
un remplacement physique des composants affectés. Les correctifs logiciels déployés
pour ces problémes architecturaux offrent généralement des atténuations qui réduisent
I'exploitabilit¢ mais entrainent souvent des compromis significatifs en termes de
performance et ne suppriment pas la vulnérabilité.

2.2.1 Attaque sur la mémoire

Les attaques ciblant les sous-systtmes mémoire exploitent les caractéristiques
physiques et architecturales des différents types de mémoire pour compromettre la
confidentialité, l'intégrité ou la disponibilité des données. Ces attaques peuvent étre
classifiées en deux catégories principales : les attaques par perturbation physique et les
attaques spéculatives.

L'attaque Rowhammer, documentée par [Kim 2014], constitue I'exemple emblématique
des attaques par perturbation physique. Cette technique exploite une vulnérabilité
fondamentale des mémoires DRAM (Dynamic Random Access Memory). L'attaquant
identifie d'abord des paires de lignes mémoire physiquement adjacentes, appelées
"aggressor rows". |l accéde ensuite répétitivement et alternativement a ces lignes,
souvent plus de 100 000 fois par seconde, créant des perturbations électriques par
interférence. Ces perturbations déchargent prématurément les condensateurs des
cellules de la ligne victime située entre les deux lignes agresseurs. Les bits basculent
lorsque la charge des condensateurs tombe sous le seuil de détection, modifiant ainsi les
données stockées, tout cela sans avoir accés a ces cellules. L'impact peut étre
dévastateur : modification des tables de pages mémoire, corruption des structures de
contréle du noyau ou altération des bits de privilége dans les descripteurs de sécurité.

Face a cette menace, les fabricants de puces mémoire ont introduit des mécanismes
d'atténuation, notamment le Target Row Refresh (TRR), congu pour détecter et prévenir
les modeles d'accés caractéristiques d'une attaque Rowhammer. Cependant, I'évolution
de ces contre-mesures a été suivie par le développement de techniques d'attaque plus
sophistiquées, comme TRRespass, Frigo a démontré la capacité a contourner ces
protections en employant des modéles d'acces plus complexes et distribués, établissant
que les implémentations de TRR étaient vulnérables a des « many-sided hammering
patterns » (schémas d'accés multidirectionnels qui ciblent simultanément plusieurs lignes
de mémoire adjacentes [Frigo 2020]. Jattke a affiné cette approche en développant un
algorithme capable de découvrir automatiquement des modéles d'accés mémoire

16



efficaces pour déclencher des bit flips, contournant ainsi pratiquement toutes les
implémentations TRR existantes [Jattke 2022].

Les attaques spéculatives exploitent les optimisations architecturales des processeurs
modernes pour extraire des informations sensibles.

Meltdown et Spectre ont révélé en 2018 et 2019 comment I'exécution spéculative et le
réordonnancement des instructions pouvaient étre exploités pour contourner les
frontieres de sécurité et accéder a des données privilégiées. Ces attaques exploitent les
mécanismes d'optimisation des processeurs en ciblant I'exécution spéculative, c’est
quand le processeur exécute par anticipation des instructions qui pourraient étre
nécessaires (par ex: réordonnancement des instructions). Meltdown exploite
spécifiquement le fait que la vérification des privileges est effectuée aprés I'exécution
spéculative des instructions. Cette fenétre temporelle, bien que minuscule (quelques
nanosecondes), suffit pour créer des effets secondaires mesurables sur le cache,
notamment des variations de temps d'accés. Ces variations permettent I'extraction
d'informations sensibles a travers un canal auxiliaire basé sur les timings d'acces au
cache, contournant ainsi les protections d'isolation mémoire les plus fondamentales du
systeme. [Meltdown 2018] [Spectre 2019]

En 2024, I'attaque micro-architecturale Indirector a affecté les processeurs Intel de 13e et
14e générations, révélant comment des entiers spéculatifs pouvaient étre exploités pour
extraire des secrets a travers le cache [Bitdefender 2024].

2.2.2 Attaques par injection de fautes

L'injection de fautes consiste a perturber, de maniére contrélée, la tension, I'horloge ou
'environnement physique du composant pour forcer des dérives de calcul.

La manipulation de la tension d'alimentation représente une premiére approche, ou
l'introduction de variations rapides ou de « glitches » peut perturber le fonctionnement
normal des circuits, induisant des erreurs de calcul ce qui peut aboutir a des
contournements de vérification de sécurité. Cette technique exploite la sensibilité des
semi-conducteurs aux fluctuations de tension, particulierement durant les opérations
critiques comme l'exécution d'algorithmes cryptographiques ou de vérifications
d'authentification.

Un exemple particulierement significatif est la technique VGlitch documentée par
Jerinsunny [Jerinsunny 2024], démontrant la vulnérabilité des microcontréleurs STM32
aux attaques par tension. Cette recherche a révélé qu'en appliquant des impulsions de
tension précis et synchronisées, il était possible de contourner les mécanismes de
protection de la mémoire (PMP) et d'exécuter du code non autorisé, compromettant ainsi
l'intégrité du systéme. Ces perturbations provoquent des erreurs dans I'exécution des
instructions, comme la transformation d'une instruction de branchement conditionnel
(BEQ - Branch if EQual, qui n'exécute le saut que si la condition d'égalité est remplie) en
branchement inconditionnel (comme JMP - Jump, qui exécute toujours le saut sans
vérifier aucune condition), ce qui permet de sauter des vérifications cruciales. Pour
réaliser cette attaque, un générateur d'impulsions programmable et une sonde de tension

17



haute précision sont utilisés pour injecter des transitoires de tension de quelques
nanosecondes a des moments précis du cycle d'horloge. La précision temporelle et
I'amplitude de ces glitches sont calibrées pour affecter spécifiquement certaines portes
logiques sans déclencher les détecteurs de sous-tension ou provoquer une réinitialisation
compléte du systéme.

Les perturbations électromagnétiques constituent une seconde approche, ou I'application
ciblée de champs électromagnétiques localisés peut induire des courants parasites dans
les circuits, perturbant ainsi leur fonctionnement normal. Cette méthode présente
I'avantage significatif de pouvoir étre implémentée sans contact physique direct avec le
composant ciblé, augmentant ainsi sa discrétion et réduisant les traces forensiques. La
technique EMFI (Electromagnetic Fault Injection) a évolué en conséquence, avec le
développement d'injecteurs de fautes électromagnétiques de haute précision capables
de cibler des zones spécifiques d'un circuit intégré. Les courants induits peuvent modifier
I'état des transistors pendant quelques nanosecondes, suffisamment pour transformer un
« 0 » en « 1 » dans un registre critique ou inverser une condition d'authentification. Une
étude a démontré lefficacité de I'EMFI contre des implémentations matérielles
d’algorithmes cryptographiques : Dehbaoui a montré qu’une impulsion EMFI pouvait
provoquer des fautes exploitables par analyse différentielle pour extraire la clé d’'un AES.
[Dehbaoui 2012]

Les attaques par injection de fautes peuvent avoir différents effets, tel que le « saut
instruction », c’est-a-dire qu'on va forcer le processeur a sauter des instructions qu’il
devait normalement exécuter, ce qui provoquera une possible corruption des données ou
alors de changer le flux d’exécution pour le détourner vers un code malveillant.

2.2.3 Attaques sur les périphérique et interfaces

Les périphériques et interfaces matérielles constituent des vecteurs d'attaque dans
I'architecture systéme, exploitant les privileges élevés accordés a certaines interfaces
permettant de contourner les mécanismes de protection du systéme d'exploitation car
opérant souvent a un niveau de privilege supérieur aux défenses logicielles.

Dans les systemes x86, l'interface SPI est utilisée pour stocker le firmware UEFI/BIOS.
Comme nous 'avons vu précédemment, celles-ci peuvent étre utilisé pour l'installation de
bootkits persistants et ainsi compromettre le systéme au plus bas niveau.

Les attaques DMA (Direct Memory Access), exploitant les interfaces offrant un accés
direct a la mémoire physique (comme Thunderbolt, PCle ou FireWire). Ces interfaces
sont congues pour optimiser les performances en permettant aux périphériques de
communiquer directement avec la mémoire systéme sans intervention du processeur. Un
périphérique peut théoriquement utiliser ces capacités DMA pour lire ou écrire
arbitrairement dans la mémoire systéme, contournant ainsi les mécanismes de protection
implémentés au niveau du systeme d'exploitation.

Des attaques comme Thunderspy ont démontré comment les interfaces Thunderbolt
pouvaient étre exploitées pour contourner complétement les protections du systéme
d'exploitation et accéder aux données chiffrées, méme sur un systéme verrouillé ou en

18



veille. Comme il est conclu dans l'article, « par un accés physique de seulement cing
minutes au dispositif, un attaquant peut extraire les données de périphériques Windows
ou Linux équipés de ports Thunderbolt » [Thunderbolt 2020]. L'interface Thunderbolt offre
un acceés DMA avec une bande passante de 40 Gbps, permettant théoriquement aux
périphériques connectés de lire et d'écrire directement dans la mémoire systéme. Bien
que les contréleurs IOMMU (Input—output memory management unit) (ex: Intel VT-
d/AMD-Vi) soient censés restreindre ces accés DMA, I'attaque Thunderspy contourne ces
protections en reprogrammant le firmware du contréleur Thunderbolt. Cette
reprogrammation s'effectue par extraction et modification du firmware, désactivant les
restrictions de sécurité au niveau matériel. L'attaque exploite également les fenétres de
vulnérabilité qui apparaissent pendant la phase d'initialisation du systéme, avant que
toutes les protections ne soient actives. Une fois ces barriéres contournées, l'attaquant
peut lire et écrire directement dans la mémoire systéme, contournant toutes les
protections logicielles du systéme d'exploitation, y compris le chiffrement de disque,
puisque les clés déchiffrées résident en mémoire pendant I'utilisation.

L'exploitation des microcontrdleurs périphériques constitue un second vecteur. Les
périphériques (cartes graphiques, carte réseau, disques SSD, ...) intégrent leurs propres
processeurs exécutant un firmware dédié, opérant trés souvent avec des privileges
élevés et un acceés direct aux ressources systéme. Les contréleurs BMC (Baseboard
Management Controller) présents dans les serveurs d'entreprise illustrent
particulierement cette menace. Le BMC est un microcontréleur spécialisé intégré a la
carte mére des serveurs, qui fonctionne indépendamment du systéme d'exploitation
principal et du processeur héte, il permet aux administrateurs de gérer a distance
I'ensemble des fonctions du serveur. En 2023, Eclypsium a révélé deux vulnérabilités
critiques (CVE-2023-34329 et CVE-2023-34330) dans le frmware BMC MegaRAC, utilisé
par de nombreux fournisseurs (HP, Dell, ...), ces vulnérabilités permettaient I'exécution
de code arbitraire avec des priviléges root matériel, sans authentification préalable.
[Eclypsium 2023]

Les attaques ciblant les bus de communication systéme, comme 12C, SPI ou JTAG,
constituent un autre vecteur. Insuffisamment protégées lors de la production matérielle,
ces interfaces, initialement congues pour le débogage, la configuration ou la
programmation des composants matériels, peuvent étre exploitées pour accéder a des
fonctionnalités privilégiées. Accessibles via des points de test sur le circuit imprimé, elles
offrent un acceés direct a la mémoire et aux registres processeur permettant :

e Lalecture et I'écriture du firmware en clair
e Le contournement de toute authentification logicielle
e Linjection de fautes ciblées (glitching) pour sauter une étape de vérification.

Aprés avoir abordé les attaques ciblant directement les composants matériels, il est
essentiel d'examiner une autre catégorie d'attaques qui, bien que ne nécessitant pas un
accés physique direct au matériel, exploitent néanmoins les caractéristiques physiques
ou temporelles des composants pour compromettre leur sécurité : les attaques par
canaux auxiliaires.

19



2.3 Attaques par canaux auxiliaires

Les attaques par canaux auxiliaires exploitent des fuites physiques ou temporelles émises
par un dispositif lors de ses opérations cryptographiques afin de récupérer des clés ou
des données sensibles. Plutét que de s’appuyer sur une vulnérabilité logique du firmware
ou du systéme d’exploitation, ces attaques mesurent et analysent des caractéristiques
telles que le temps d’exécution, la consommation électrique ou encore les émissions
électromagnétiques. Cette menace, peut étre menées a distance (via des sondes) ou
localement.

Les attaques par canaux auxiliaires peuvent étre classifiées selon plusieurs dimensions :
le canal exploité, la méthode d'analyse, et la proximité requise avec le dispositif cible.

L'attaque basées sur la consommation d'énergie est basée sur deux principales
techniques

1. SPA (Simple Power Analysis) : cette technique examine directement les variations de
consommation électrique pendant I'exécution d'opérations cryptographiques pour
identifier des motifs correspondant a des opérations spécifiques. Par exemple, dans
une implémentation naive de RSA, la différence de consommation entre une
opération de multiplication et une opération de carré peut révéler directement les bits
de la clé privée. La SPA nécessite généralement peu d’échantillons mais requiert une
connaissance approfondie de I'algorithme ciblé.

2. DPA (Differential Power Analysis) représente une approche plus sophistiquée que la
SPA. Cette technique exploite des méthodes statistiques appliquées a de multiples
traces de consommation électrique pour extraire les informations relatives aux clés
cryptographiques. Sa robustesse lui permet de rester efficace méme en présence
d'un bruit de mesure significatif ou lorsque des contre-mesures élémentaires ont été
implémentées dans le dispositif ciblé.

Au-dela de la consommation électrique, les circuits intégrés émettent des ondes
électromagnétiques proportionnelles a I'activité des transistors. En plagant une antenne
ou une sonde prés du composant, l'attaquant enregistre ces émissions et, via des
traitements spectrogrammes, identifie des patterns corrélés aux opérations
cryptographiques. Les attaques SEMA (Simple Electromagnetic Analysis) et DEMA
(Differential Electromagnetic Analysis) suivent des principes similaires a leurs
homologues basées sur la consommation d'énergie, mais présentent un avantage
significatif, elles peuvent étre réalisées a distance, sans contact direct avec le circuit.

Les attaques temporelles consistent a mesurer la durée d’exécution d’opérations
cryptographiques et a en déduire des informations sur la clé secréte. Chaque instruction
ou branche conditionnelle peut présenter un temps d’exécution variable selon les bits
traités, en accumulant suffisamment de mesures, un attaquant peut reconstituer
'ensemble de la clé [Kocher 1996]. Ces attaques restent d’actualité, notamment contre
les implémentations TLS sur serveurs cloud, avec le “cache timing” [Bitdefender 2024].
D'autres variantes comme les attaques par cache (Cache-timing, Flush+Reload,
Prime+Probe) exploitent le partage des caches entre processus pour inférer des
informations sensibles a partir des schémas d'accés mémoire.

20



D'autres canaux physiques peuvent également étre exploités :

e Attaques acoustiques : Analyser le son émis par un clavier pour déterminer les
touches pressées, ou les variations sonores subtiles de certains composants
électroniques pendant des opérations cryptographiques.

o Analyse thermique : Exploiter les variations de température des composants pour
déduire des informations sur les calculs effectués.

2.4 Menaces systemes embarqués et IOT

Les systémes embarqués ainsi que les objets de linternet des objets (loT), qu'ils
motorisent un véhicule, un dispositif médical ou un capteur industriel, partagent trois
contraintes importantes : des ressources matérielles limitées (CPU, mémoire, énergie),
une connectivité quasi permanente et des cycles de vie variables : relativement courts (3-
5 ans) pour les dispositifs IoT grand public, mais potentiellement trés longs (10-15 ans)
pour certains systéemes embarqués industriels ou critiques. Dans les deux cas, ces cycles
de vie sont souvent caractérisés par des mises a jour irréguliéres qui créent des fenétres
de vulnérabilité prolongées. Avec une projection de plus de 75 milliards d’objets
connectes selon le NIST, ces objets deviennent un acteur majeur au niveau de la
sécurisation : 67,3 % des firmwares loT exploitent aujourd’hui encore des bibliothéques
obsolétes, exposant ainsi de nombreuses applications a des vulnérabilités connues
[AutoFirm 2024]

2.4.1 Chaine d’approvisionnement : du silicium au firmware

La production d'un objet connecté mobilise souvent un écosystéme mondial de sous-
traitants, rendant particulierement complexe la vérification de I'authenticité et de I'intégrité
des composants (SoC, microcontréleurs, modules radio). Les rapports d'/ENISA signalent
une augmentation préoccupante de la contrefacon matérielle et de l'insertion de portes
dérobées dés l'usine sous forme de blocs IP malveillants [ENISA 2023]. Avec une
possibilité d'implants matériels (« hardware implants ») di un contexte géopolitique et
d’espionnage, ces dispositifs microscopiques, détectables uniquement par radiographie
ou microscope électronique, peuvent étre insérés lors de la fabrication et de la
distribution.

Comme évoqué § 2.2.3, les ports JTAG demeurent fréquemment actifs sur le produit final,
faute de locking définitif ou d’e-fuses di & des contrainte de réduction des codts. lls
deviennent donc la premiére cible lors d’une attaque hardware, avec le faible co(t des
sondes et des injecteurs de glitch, cela rend cette menace accessible a un trés large
eventail d’attaquants. Une étude en 2018 par Vishwakarma recense de nombreux cas
d’exploitation réussie de JTAG sur des dispositifs loT grand public, notamment pour
extraire des clés cryptographiques ou injecter du code malveillant [Vishwakarma 2018].

2.4.2 Vulnérabilités liées au cycle de vie et a la maintenance

La gestion des mises a jour constitue un autre défi sécuritaire majeur pour ces systémes.
Si de nombreux dispositifs 10T intégrent des mécanismes de mise a jour over-the-air

21



(OTA), leur implémentation souffre souvent de failles critiques. L'absence de vérification
cryptographique robuste expose ces systtmes a des attaques de type « firmware
poisoning », ou un attaquant peut injecter un firmware malveillant via un proxy ou un
serveur de mise a jour compromis.

Cette vulnérabilité est amplifiée par 'abandon des constructeurs, a partir d’'un cycle, d’'un
support de ses appareils, ainsi les vulnérabilités découvertes demeurent sans correctif.
Cette problématique est particulierement prononcée dans les contextes industriels, ou
des systemes embarqués critiques qui peuvent rester opérationnels pendant des
décennies, accumulant progressivement une dette de sécurité considérable.

2.4.3 Failles protocolaires, configuration et attaques sur les
ressources

Outre les vulnérabilités matérielles et de firmware, les protocoles de communication loT
(MQTT, CoAP, HTTP/REST, WebSocket) et les différentes APIs constituent un vecteur
d’'attaque privilégié. Par exemple, le protocole MQTT, largement déployé pour sa légéreté,
a révélé 33 vulnérabilités critiques affectant des millions de dispositifs, parmi lesquelles
18 jugées « critical » par Kaspersky [Mitchell 2022].

Dans le contexte des dispositifs 0T grand public, la fragilité sécuritaire se manifeste
également par l'utilisation de configurations par défaut. De nombreux produits sont
déployés avec des identifiants d'accés inchangé, des interfaces de gestion
insuffisamment protégées, ou des services superflus activés par défaut. Les botnets Mirai
et ses dérivés en sont des exemples frappants, ayant exploité ces vulnérabilités pour
orchestrer des attaques distribuées massives.

Les dispositifs modernes implémentent souvent plusieurs protocoles simultanément
(WiFi, Bluetooth, LoRa, ZigBee), chacun présentant son propre modéle de menace. Cette
multiplicité protocolaire crée un environnement propice aux attaques transitives, ou la
compromission d'un sous-systeme peut compromettre I'ensemble du dispositif.

Les attaques par épuisement de batterie constituent une menace particuliére aux
systemes alimentés par pile. Un attaquant peut forcer des transmissions radio répétées
ou des calculs intensifs pour vider prématurément la batterie, une forme de déni de
service particulierement efficace contre les capteurs déployés dans des zones difficiles
d'accés.

22



Ecosystem Access . Device Physical Device Web
Control Device Memory Interfaces Interface
) ) Device Network Administrative Local Data
Devico Fimware Services Interface Storage
Cloud Web Ecosystem Vendor Backend Third-Party Backend
Interface Communication APls APls
Update Mobile Network E Development
Mechanism Application Traffic H Tools

Figure 3 - Surface d'attaque IOT (source : https:.//www.researchgate.net/figure/o T-Attack-
Surface-Areas-Based-on-Miessler-2015_fig2 286440570)

Face a I'ensemble de menaces qui ont été abordés, les approches traditionnelles de
sécurisation s'avérent souvent inadaptées, nécessitant I'élaboration de défense
spécifiquement congus pour les contraintes et vulnérabilités uniques des systémes
embarqués, loT et x86. Ces architectures de protection, qui seront explorées dans le
chapitre suivant, doivent intégrer simultanément les contraintes matérielles inhérentes a
ces systémes tout en établissant des fondations sécuritaires robustes adaptées a leur
déploiement dans des environnements potentiellement hostiles.

23


https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570
https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570

Architectures de protection
matérielle

3. Architectures de protection matérielle

3.1 Principes fondamentaux de défense

Dans un contexte ou les attaquent ciblant les couches basses (firmware, pilotes,
chargeurs d’amorgage) deviennent de plus en plus sophistiquées, la conception
d’architectures de protection matérielle s'impose comme une exigence critique. Ces
architectures reposent sur quatre piliers fondamentaux :

e Les racines de confiance

e Les chaines de confiance

e Les mécanismes d’attestation

e Les principes d’isolation et de cloisonnement

Leur combinaison permet d’établir un continuum de sécurité depuis I'amorgage du
systéme jusqu’aux applications de haut niveau.

e Racine de confiance (Root of Trust) : Selon la norme ISO/IEC 11889:2015, une
racine de confiance désigne « un ensemble de fonctions au sein d'un systéme de
confiance qui sont toujours implicitement fiables et qui forment la base permettant
d'établir la confiance dans I'ensemble du systéme ». Le NIST SP 800-193 précise
qu'une RoT doit posséder trois propriétés essentielles : elle doit étre
« inaltérable » (immutable), « mesurable de maniére fiable » (reliably measured)
et « minimale » pour réduire la surface d'attaque.

e Chaine de confiance (Chain of Trust) : Définie par le standard GlobalPlatform
TEE System Architecture v1.3 comme une séquence de transferts d'exécution ou
chaque étape vérifie cryptographiquement l'intégrité et I'authenticité de I'étape
suivante avant de lui transférer le contrble, créant ainsi une propagation transitive
de la confiance depuis la racine initiale.

e Meécanismes d’attestation : lls complétent la chaine de confiance en fournissant,
a un tiers ou a un hyperviseur, la preuve cryptographique de I'état exact de la
plateforme. En utilisant des valeurs aléatoires uniques (nonces) comme défis
cryptographiques et des signatures générées par des clés d'attestation dédiées,
ils garantissent que le systéme n'a pas été compromis depuis sa mesure initiale.

24



e Isolation/Cloisonnement : Le NIST IR 8320 caractérise l'isolation comme « la
séparation des domaines d'exécution ou de stockage pour prévenir toute
influence non autorisée entre eux », en distinguant l'isolation spatiale (séparation
des ressources mémoire), temporelle (séparation des cycles d'exécution) et
logique (séparation des privileges d'acces).

3.1.1 Racines de confiance matérielles

La racine de confiance matérielle (Hardware Root of Trust (HRoT)) constitue le fondement
de toute architecture de sécurité moderne. Selon les recommandations du NIST [NIST
2018], comme dit précédemment, toute RoT doit répondre a au moins trois critéres
essentiels : immutabilité, capacité cryptographique, et résistance aux attaques physiques
et logiques.

Limmutabilité s’exprime par la non-modifiabilité des données sensibles aprés la
fabrication, souvent assurée par des mémoires ROM (Read Only Memory). La capacité
cryptographique inclut la génération de clés asymétriques (RSA, ECC) et le calcul de
fonctions de hachage sécurisées (SHA-256 au moins), tandis que la résistance aux
attaques repose sur la protection des attaques physiques ou des contre-mesures contre
les attaques par canaux auxiliaires.

La littérature distingue plusieurs services de RoT, notamment :

e Root of Trust for Measurement (RTM) : initialise le processus de mesure du code

¢ Root of Trust for Verification (RTV) : vérifie la validité des blobs mesurés.

e Root of Trust for Storage (RTS) : fournit un stockage sécurisé pour les données
sensibles.

Ces services collaborent en chaine pour établir une fondation de confiance dés I'allumage
du systéme.

3.1.2 Chaines de confiance et attestation

Le concept de chaine de confiance constitue un fondement architectural critique dans la
sécurité moderne des systémes informatiques. Il repose sur un principe fondamental :
établir une séquence ininterrompue de validations cryptographiques depuis un ancrage
de confiance initial jusqu'aux couches applicatives.

Cette approche s’articule autour de trois mécanismes, la mesure séquentielle, la
validation cryptographique et le transfert du contrdle aprés que les précédents
mécanismes ont réussi. C’est la procédure qui est utilisé dans Secure Boot et qui sera
discuté plus en détail dans une prochaine partie.

Dans la mesure séquentielle, chaque composant de la chaine produit un hash du
composant suivant avant de lui transférer le controle d'exécution, stocké dans des
registres protégés contre les modifications.

Deux modéles principaux d'établissement de chaine de confiance coexistent : La Static
Root of Trust for Measurement (SRTM) initialise la chalne dés l'allumage du systéme et
maintient une séquence continue de validations tout au long du processus de démarrage

25



et le Dynamic Root of Trust for Measurement (DRTM) qui permet d'établir une nouvelle
racine de confiance a tout moment pendant I'exécution du systéme, utile dans les
environnements dynamiques.

L'attestation matérielle permet ensuite de fournir a un tiers (hyperviseur, gestionnaire de
réseau) des preuves cryptographiques de I'état du systéme, avec I'utilisation d’'une clé
d'attestation (Attestation Identity Key), consolidant la confiance tout au long du cycle

3.1.3 Isolation et cloisonnement

Le principe d'isolation vise a compartimenter les ressources du systéme afin de contenir
les éventuelles compromissions et limiter leur propagation

L'isolation peut étre mise en ceuvre a différents niveaux :

Isolation physique : séparation matérielle compléte des composants critiques
(ex : Secure Element).

Isolation par virtualisation : utilisation d'hyperviseurs pour séparer les
environnements d'exécution.

Isolation par contréle d'accés mémoire : restriction des accés a certaines zones
mémoire par des mécanismes matériels.

Isolation temporelle : séparation dans le temps des opérations critiques et non
critiques.

Les architectures ARM TrustZone illustrent cette isolation via deux mondes distincts,
« Secure World » et « Normal World », avec une barriere matérielle empéchant tout acces
non autorisé (sans une authentification préalable) du monde normal au monde sécurisé

.

Mormal World Secure World
i ™
Application
' ¢ v,
-

_,
endor Specific Library 3'—'1"‘3”"“3['5‘[}

|

-

Operating System [ Trusted Application

I 1

TrustZone Driver

A Trusted Exacution
Environment kemel

Figure 4 - La vision de ARM sur l'isolation et le cloisonnement (source : ARM)

26



Le cloisonnement des privileges s'appuie sur le principe de moindre privilege (Principle
of Least Privilege), selon lequel chaque composant ne doit disposer que des droits
strictement nécessaires a son fonctionnement, réduisant ainsi la surface d’attaque.

3.2 Technologies de sécurité matérielle pour systémes
x86/x64

Les architectures de protection matérielle pour plateformes x86/x64 ont considérablement
évolué ces derniéres années. Cette section analyse les mécanismes fondamentaux
déployés dans les systémes modernes pour garantir un niveau de sécurité adéquat
jusqu’au démarrage du systéme d’exploitation.

3.2.1 Secure Boot et UEFI protégé

Le Secure Boot constitue un mécanisme de protection essentiel établissant une chaine
de confiance cryptographique durant la séquence d'amorgage. Son implémentation
repose sur une validation systématique des signatures de chaque composant depuis le
firmware initial jusqu'au noyau du systeme d'exploitation.

Secure Boot Process

System(s|

Second Stage Crypto Key
Boot Loader

. .
il First Stage W
zfl Boot Loader |
‘
il Crypto Key

Signature
Crypto Key

L1

TOHAEIEtaeaBarabIat

Figure 4 - Processus du Secure Boot (source : https://ealtili. medium.com/secure-boot-process-

8b5fa87903f4

L'architecture de validation s'articule autour d'une hiérarchie de clés :

e Platform Key (PK) : Racine de confiance contrélant I'accés aux variables UEFI
protégées

o Key Exchange Keys (KEK) : Clés intermédiaires permettant la signature des
certificats d'autorisation

e Bases de données db/dbx : Contenant respectivement les signatures autorisées
et révoquées

27


https://ealtili.medium.com/secure-boot-process-8b5fa87903f4
https://ealtili.medium.com/secure-boot-process-8b5fa87903f4

Cette hiérarchie de confiance implique plusieurs acteurs exergant des responsabilités, les
fabricants de matériel (OEMs), établissent initialement la Platform Key (PK) lors de la
fabrication du systeéme et l'inscrivent dans la mémoire non volatile. Cette clé représente
l'autorité ultime sur la configuration de sécurité UEFI. Les OEMs préconfigurent
également les KEKs initiales et les entrées des bases db/dbx. Les OS peuvent aussi
fournisent leurs KEKs

Les processeurs modernes intégrent des racines de confiance matérielles
complémentaires au Secure Boot UEFI. Intel Boot Guard, introduit avec les processeurs
de 4eme génération, implémente une racine de confiance matérielle vérifiant I'authenticité
du premier code exécuté lors du démarrage avec deux modes opérationnels distincts : le
mode Verified Boot, qui vérifie I'authenticité du firmware sans bloquer nécessairement
I'exécution en cas d'échec, et le mode Measured Boot, qui calcule une empreinte
cryptographique du firmware et la stocke dans le TPM pour permettre une attestation
ultérieure. La clé publique de vérification est stockée dans des fusibles électroniques non
reprogrammables, établissant un ancrage de confiance résistant a la subversion.

Parallelement, AMD a développé sa propre solution avec le Platform Security Processor
(PSP), un coprocesseur de sécurité intégré qui vérifie l'intégrité du BIOS avant son
exécution et implémente une racine de confiance matérielle pour le systeme. Son
architecture repose sur un cceur ARM dédié, isolé du processeur principal, garantissant
ainsi une séparation physique entre I'environnement d'exécution sécurisé et le reste du
systeme. Le PSP implémente également des capacités de chiffrement autonomes et
prend en charge l'implémentation du firmware TPM (fTPM).

Ces technologies constituent une défense significative contre les attaques ciblant la
phase du démarrage, comme le souligne 'ANSSI dans ses recommandations pour les
plateformes x86 [ANSSI 2019]. Cependant, ces protections ont montré leurs limites avec
la découverte de vulnérabilités critiques. La faille CVE-2024-7344, identifiée par les
chercheurs d'ESET en janvier 2025, permet le contournement du Secure Boot. [ESET
2024]. Cette vulnérabilité critique exploite une faiblesse dans le processus de validation
des signatures du bootloader, permettant & un attaquant disposant de privileges
administratifs d'injecter du code non signé dans la chaine de démarrage.

Dans l'architecture ARM, il existe ce qu’on appelle Trusted Firmware (ATF), ce processus,
similaire au fonctionnement de Secure Boot implique plusieurs étapes : BL1 (ROM) —
BL2 (Trusted Boot Firmware) — BL3 (Runtime Firmware) — OS

3.2.2 Trusted Platform Module : variantes et vulnérabilités

Le TPM représente une composante fondamentale dans l'architecture de sécurité
modernes. Spécifié par le Trusted Computing Group (TCG), le TPM 2.0 constitue
aujourd'hui la norme dominante dans ce domaine, succédant a sa version 1.2 avec des
améliorations en termes de fonctionnalités cryptographiques et de résistance aux
attaques [ISO 2015].

Le TPM assure plusieurs fonctions primordiales dans I'architecture de sécurité globale. Il
permet la génération et le stockage sécurisé de clés cryptographiques, offre des

28



capacités de mesure et d'attestation de lintégrité du systéme via ses registres de
configuration de plateforme (PCR), le scellement cryptographique de données, et fournit
une source fiable de nombres aléatoires [Arthur 2015].

L'écosystéme TPM présente plusieurs implémentations, chacune avec ses compromis
entre sécurité, colt et intégration.

Le dTPM constitue l'implémentation la plus traditionnelle et, théoriquement, la plus
securisée. Cette forme de TPM est un composant matériel physiquement, généralement
sous forme de puce dédiée, connecté a la carte mére via un bus LPC (Low Pin Count) ou
SPI (Serial Peripheral Interface). Cette séparation physique conféere au dTPM un niveau
d'isolation supérieur face aux attaques logicielles. LANSSI recommande explicitement
cette implémentation pour les environnements a haute sensibilité [ANSSI 2019].

Le fTPM représente une évolution plus récente, consistant en une implémentation
logicielle exécutée dans un environnement privilégié du processeur. C’est ce qu’utilise
AMD avec le Platform Security Processor et Intel avec son Platform Trust Technology
(PTT). Cette approche présente I'avantage de réduire les colts et la complexité de
conception. Toutefois, le fTPM partage partiellement son environnement d'exécution avec
d'autres composants du systéme, réduisant son isolation face a certaines catégories
d'attaques.

Ces implémentations ne sont pas exemptes de vulnérabilités, la vulnérabilité TPM-FAIL a
démontré la possibilité d'extraire des clés privées via des attaques temporelles contre des
TPM. Sur le fTPM d'Intel, les chercheurs ont récupéré une clé ECDSA aprés seulement
1 300 observations en moins de deux minutes et sur un TPM matériel de
STMicroelectronics cette clé a été extraite aprés 40 000 observations en 80 minutes.
[TPM-FAIL 2020]

Le vTPM constitue une implémentation entierement logicielle, généralement déployée
dans des environnements virtualisés pour fournir des fonctionnalités TPM aux machines
virtuelles. Google a été le premier fournisseur majeur de cloud a offrir des TPM virtualisés
dans le cadre de leur produit. L'hyperviseur gére généralement ces instances de vTPM
dont le niveau de sécurité dépend fondamentalement de la robustesse de I'hyperviseur
et de I'environnement d'exécution héte.

L'efficacité de ces différentes variantes de TPM face aux menaces dépend non seulement
de leur mode d'implémentation, mais également de leur intégration cohérente dans
I'architecture de sécurité globale du systéme. Les évolutions récentes dans le domaine
des TPM tendent vers une intégration du fTPM.

3.3 Solutions pour systémes embarqués

3.3.1 ARM TrustZone / RISC-V PMP

ARM TrustZone représente la technologie de sécurité dominante dans I'écosystéme des
systemes embarqués modernes. Introduite par ARM, en 2004, cette technologie
implémente un concept de séparation matérielle entre deux mondes d'exécution : un
monde sécurisé (Secure World), pour les opérations critique et un monde normal (Normal

29



World), dans lequel I'OS tournera. Initialement congue pour les processeurs haut de
gamme, cette technologie a été étendu sur un grand ensemble de microcontréleurs et
s'est imposée comme un élément clé dans la sécurisation des applications I0T sensibles,
notamment pour le paiement mobile, I'authentification biométrique et la protection des
clés cryptographiques.

Cette isolation s'étend a tous les niveaux de l'architecture systéme. Au niveau du
processeur, TrustZone implémente un bit d'état Non-Secure (NS) qui détermine sile CPU
fonctionne dans le monde sécurisé (NS=0) ou non-sécurisé (NS=1). Pour la mémoire, le
Security Attribution Unit (SAU) partitionne I'espace d'adressage, attribuant des régions
spécifiques a chaque monde. Les périphériques sont contrélés par le Security
Configuration Controller (SCC) qui définit leur accessibilité depuis chaque monde. Enfin,
les bus systéme propagent le bit NS a travers toutes les transactions, garantissant que la
séparation des mondes est maintenue jusqu'aux périphériques externes.

Une étude de 2019 sur un SoC CortexA53 (Raspberry Pi 3) montre que le basculement
entre mondes sécurisé et non sécurisé prend = 1520 us et que les calculs réalisés dans
le Secure World n’encaissent que <5 % de perte de performance, seule I'écriture dans
le secteur de stockage chiffré souffre d’'un ralentissement (débit + 7) [Amacher 2019].

L'architecture RISC-V propose une approche différente mais complémentaire avec son
mécanisme Physical Memory Protection (PMP).

Le mécanisme PMP définit 64 régions mémoire qui peuvent étre individuellement
configurées pour appliquer des permissions d'accés. Les caractéristiques architecturales
du PMP sont :

e Hiérarchie des privileges : Machine-mode (M-mode), Supervisor-mode (S-mode)
et User-mode (U-mode)
o Configuration exclusive M-mode : Seul ce mode peut programmer les
registres PMP
o Verrouillage irrévocable : Le bit L empéche toute modification jusqu'au reset du
matériel (méme par un logiciel qui peut étre en M-mode)
e Les permissions de lecture (R), d'écriture (W) et d'exécution (X) par région

Cette architecture de sécurité trouve une application particulierement pertinente dans le
contexte des environnements d'exécution de confiance (Trusted Execution Environment,
TEE), ou lisolation totale entre composants sécurisés et non sécurisés constitue un
impératif absolu.

3.3.2 Secure Elements et enclaves sécurisées

Un Secure Element (SE) représente lI'approche hardware la plus robuste pour la
protection cryptographique, généralement sous la forme d’un microprocesseur sécurisé
dédié (forme de puce distincte ou intégrée), qui offre un environnement hautement
sécurisé.

L’architecture typique d'un Secure Element :

e Protection physique : Blindage métallique, maillage actif

30



e Capteurs anti-intrusion : Détection tension, température, lumiére, fréquence
e Moteur cryptographique : Accélérateurs RSA/ECC, AES, SHA

o Mémoire non-volatile : EEPROM/Flash sécurisée pour clés et certificats

¢ Interface limitée : SPI/I2C avec authentification des commandes

Les SE se déclinent en plusieurs formats : eSE (embedded Secure Element) soudé a la
carte mére, eSIM, module discret SPI ou carte micro-SD sécurisée. Les SE atteignent
typiquement Common Criteria EAL5+ ou FIPS 140-3 niveau 2, les rendant adaptés aux
applications critiques comme paiements mobiles ou passeports électroniques.

Les enclaves sécurisées (TEE) représentent une évolution du concept de Secure
Element, en offrant un environnement d'exécution isolé directement intégré au sein des
processeurs principaux. Elles créent une zone protégée tout en partageant certaines
ressources avec le processeur hote. Celle-ci sont utilisé par des technologies comme
Intel SGX ou Arm Confidential Compute Architecture.

Parmi les avantages clés des enclaves sécurisées, on trouve :

e La protection des données en cours d'utilisation, chiffrées au sein de I'enclave

e |solation des algorithmes utilisées

e Larésistance aux tentatives de falsification matérielles et logicielles

e Le support du démarrage sécurisé et des mises a jour de firmware authentifiées

3.3.3 Synergie entre Secure Element et enclave

L'intégration synergique des Secure Elements et des enclaves sécurisées représente une
proposition d’architecture intéressante pour les systémes embarqués, combinant les
forces respectives de chaque technologie dans une approche défense en profondeur.

Cette architecture hybride s'articule autour :

1. Secure Element comme racine de confiance matérielle
e Stockage des clés racines dans une mémoire EEPROM protégée
o Authentification cryptographique de I'enclave via signatures ECDSA
e Validation de chaque mise a jour de firmware par le SE avant chargement
dans I'enclave (« comme un Secure Boot »).
2. Enclave pour I'exécution isolée
o Exécution des opérations cryptographiques sensibles (chiffrement,
signature, génération d’aléas) dans un environnement isolé, « sans
impact » sur 'OS héte.
e Protection contre les attaques par DMA grace a l'usage d'un contréleur
d’accés dédié, bloquant tout accés direct a la mémoire de I'enclave.
3. Persistance et attestation via le SE avec des scellement des clés et stockage des
certificats
4. Protection d'exécution continue par I'enclave
e Surveillance active de l'intégrité du code et des données chargés dans
I'enclave (measurement & runtime integrity checks).

31



e Mise en place de mécanismes de remédiation automatique (reset partiel,
rollback) en cas de détection d’anomalie.

En combinant ces deux composants, I'enclave déleste le CPU principal pour les taches
de sécurité en temps réel, tandis que le Secure Element assure en arriére-plan la
persistance et I'attestation, permettant ainsi une gestion optimisée de I'énergie et une
réduction de la complexité logicielle.

Malgré leurs différences fondamentales, toutes ces approches partagent le méme
objectif : fournir une racine de confiance robuste, tout en tenant compte des contraintes
spécifiques des plateformes qu'elles protégent.

3.4 Analyse comparative des solutions

Les architectures de protection matérielle présentées révélent des compromis
fondamentaux entre sécurité, performance et contraintes d'implémentation. Cette section
propose une analyse comparative systématique des différentes approches.

Les solutions pour plateformes x86/x64 offrent généralement le niveau de protection le
plus élevé. Le TPM discret représente l'approche la plus robuste, avec une isolation
matérielle compléte et une forte résistance aux attaques physiques, bien que son co(t
soit significativement plus élevé. Les implémentations firmware (fTPM) d'Intel et AMD
constituent un compromis attractif : intégrées directement dans le processeur, elles
réduisent les colts tout en maintenant un niveau de sécurité acceptable pour la majorité
des cas d'usage, malgré une résistance moindre aux attaques physiques.

Dans I'écosystéme embarqué, les contraintes de ressources imposent des approches
difféerentes. ARM TrustZone s'est imposée comme la solution dominante pour les
processeurs de moyenne et haute gamme, offrant une isolation matérielle efficace avec
un surco(t de performance minimal (moins de 5% selon [Amacher 2019]). Cette
technologie bénéficie d'une intégration native dans I'architecture ARM, éliminant les colts
additionnels tout en maintenant une résistance raisonnable aux attaques. Pour les
architectures RISC-V, le mécanisme PMP (Physical Memory Protection) propose une
alternative libre.

Les Secure Elements occupent une position particuliere dans cet écosystéme. Offrant le
niveau de protection physique le plus élevé grace a leur conception dédiée et leurs contre-
mesures hardware. Leur co(t élevé et leur bande passante limitée par les interfaces de
communication (SPI) restreignent cependant leur adoption généralisée.

En synthése, le choix de la solution « optimale » dépend étroitement du contexte
d'application et des menaces spécifiques. Les environnements critiques justifient
l'investissement dans des solutions matérielles dédiées (TPM discret, Secure Elements),
tandis que les déploiements a grande échelle privilégient souvent les approches intégrées
(fTPM, TrustZone). La tendance actuelle vers des architectures hybrides, combinant
plusieurs mécanismes de protection, refléte la nécessité d'adapter les défenses a la
sophistication croissante des attaques.

32



Solution

Forces

Faiblesses

TPM discret (dTPM)

Isolation matérielle compléte

Résistance élevée aux attaques
logicielles

Co0t plus élevé

Vulnérabilité aux attaques sur bus de
communication

Bande passante limitée

TPM firmware (fTPM)

Co0t réduit
Performance supérieure
Intégration native

Isolation réduite
Dépendance a la sécurité du CPU

Vulnérabilité
processeur

aux attaques du

TPM virtuel (vTPM)

Flexibilité maximale
Mise a jour simplifiee

Sécurité dépendante de I'hyperviseur
Risques d'attaques inter-VM
Pas de protection matérielle

ARM TrustZone Intégration native dans SoC Surface d'attaque au niveau du moniteur
Faible impact énergétique (logiciel gérant les transitions entre les
mondes)
Isolation matérielle légére . —
Isolation binaire (seulement deux
mondes)
RISC-V PMP Architecture ouverte et flexible Maturité limitée et écosystéeme en

Faible surco(t en silicium

développement

Secure Elements

Protection physique maximale

Résistance aux
matérielles

attaques

Co0t important
Interface limitée
Performance restreinte

Table 1 - Tableau récapitulatif des solutions de sécurité

33



Le TPM 2.0 comme élement
central de protection

4.Le TPM 2.0 comme élément central de
protection

A la suite de l'analyse des architectures de protection matérielle présentées dans le
chapitre précédent, cette section se concentre sur le Trusted Platform Module 2.0, qui
s'est progressivement imposé comme la pierre angulaire des chaines de confiance
modernes. Déployé aussi bien dans les ordinateurs personnels que dans les
infrastructures cloud et les systémes embarqués, le TPM constitue aujourd'hui I'ancre
matérielle de référence pour sécuriser les plateformes informatiques. La version 2.0,
standardisée par le Trusted Computing Group (TCG) en 2015 et révisée en 2019,
représente une évolution majeure par rapport a son prédécesseur. Elle introduit
notamment un modéle cryptographique permettant I'évolution des algorithmes (dont le
support des algorithmes quantiques), ainsi que le support natif de la cryptographie a
courbes elliptiques et des politiques d'accés conditionnelle. Cette section examine
successivement l'architecture interne et les fonctionnalités du TPM 2.0 (4.1), ses
principaux cas d'usage pour la protection des systémes (4.2), ainsi que ses limites et
vulnérabilités connues (4.3), permettant ainsi d'évaluer son réle effectif dans les
architectures de sécurité.

4.1 Architecture et fonctionnalités du TPM 2.0

4.1.1 Composants et opérations fondamentales

Le TPM 2.0 se présente comme un cryptoprocesseur sécurisé€, congu pour protéger les
informations sensibles et garantir l'intégrité des plateformes. En tant que racine de
confiance mateérielle, il constitue le fondement sur lequel repose I'ensemble de la chaine
de sécurité d'un systéme.

Au coeur du module de ce TPM 2.0 se trouve un processeur cryptographique qui prend
en charge diverses opérations cryptographiques essentielles, la génération de nombres
aléatoires, la création et la gestion de clés cryptographiques, ainsi que les opérations de
chiffrement, déchiffrement et signature. Ce processeur est complété par plusieurs

34



générateurs d'algorithmes cryptographiques, parmi lesquels figurent obligatoirement
RSA, SHA-1, SHA-256 et HMAC, auxquels s'ajoutent maintenant des algorithmes comme
I'ECC (Elliptic Curve Cryptography) et AES [Arthur 2015].

Components of a Trusted Platform Module
10 Secured Communication

[ Cryptographic Processor ] [ Persistent Memory ]

¢

N ‘ Endorsement Key (EK)
Random Number

l Storage Root Key (SRK) ]

Generator
( =
RSA Key Generator
L J [ Versatile Memory ]
& Platform Configuration
SHA-1 Hash Generator Register (PCR)

Attestation Identity Keys
N (AIK)

Encryption/ Decryption
Signature Engine

\ Jj Storage Key

& J

.

Figure 5 - Architecture interne d'un TPM 2.0 (source : https.//www.researchqgate.net/fiqure/Main-
components-of-Trusted-Platform-Module-TPM_fig1 363027155 )

La mémoire non volatile du TPM constitue un élément critique de son architecture,
permettant de stocker de maniére sécurisée différents types de données persistantes :

o Les clés d'endossement (Endorsement Keys), générées lors de la fabrication du
TPM et uniques a chaque module

e Les clés de stockage (Storage Root Keys), utilisées pour protéger d'autres clés
et données sensibles

e Les mesures d'intégrité du systéme enregistrées dans les registres PCR

e Les politiques de sécurité qui définissent les conditions d'accés aux ressources
protégées

Les registres PCR constituent le coeur du mécanisme de mesure d'intégrité. Ces registres
ne sont pas modifiables directement, mais uniquement a travers une opération appelée
"extension". L'opération d'extension PCR suit la formule : PCRJi] = Hash(PCRJi] ||
data_to_extend), ou || représente la concaténation. Cette propriété mathématique garantit
qu'une fois une valeur étendue, il est cryptographiquement impossible de manipuler le
registre pour revenir a un état précédent sans réinitialiser entierement le TPM.

Le TPM 2.0 dispose typiquement de 24 registres PCR (contre 16 pour le TPM 1.2),
numérotés de 0 a 23, chacun ayant une fonction spécifique définie par la spécification
TCG:

e PCR 0-7 : Réservés pour les mesures BIOS/UEFI et firmware

35


https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155
https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155

e PCR 8-15: Attribués aux composants du systeme d’exploitation (boot loader, OS
kernel, modules)

e PCR 16 : Destiné aux tests et débogage

e PCR 17-22 : Réservés pour le DRTM

e PCR 23 : Support d’application, librement exploitable par 'OS ou les applications
utilisateur

Comme le précise la norme ISO/IEC 11889:2015 [ISO 2015], le TPM 2.0 implémente
également une hiérarchie de clés, structurée autour de quatre domaines principaux : la
hiérarchie d'endossement, utilisée pour les fonctions d'attestation et l'identification unique
du TPM, la hiérarchie de plateforme, réservée aux constructeurs et aux administrateurs
systéme, la hiérarchie de stockage, dédiée a la protection des données utilisateurs, et la
hiérarchie Null, qui fournit un mécanisme pour les opérations temporaires sans
persistance. Cette architecture hiérarchisée permet une séparation claire des
responsabilités et des priviléges.

Les opérations fondamentales du TPM 2.0 s'articulent autour de plusieurs fonctions
cryptographiques essentielles :

e La génération et la protection de clés cryptographiques, avec la possibilité de
créer des clés qui ne peuvent jamais quitter le périmetre sécurisé du TPM ("non-
migratable keys").

e [L'attestation, permettant de prouver de maniére cryptographique I'état d'intégrité
d'un systéme a un tiers vérificateur, basé sur les valeurs PCR signées par une
clé d'attestation.

o Le scellement (sealing) et le descellement (unsealing) de données, assurant que
les informations sensibles ne peuvent étre déchiffrées que si la plateforme se
trouve dans un état d'intégrité prédéfini.

e La mesure et I'enregistrement sécurisés de I'état du systéme via des opérations
d'extension des registres PCR

4.1.2 Modele de sécurité

Le modéle de sécurité du TPM 2.0 repose sur plusieurs mécanismes de protection
complémentaires qui garantissent la robustesse de I'ensemble du systéme.

Le TPM 2.0 implémente un mécanisme de protection contre les attaques par force brute.
Ce systeme verrouille automatiquement le TPM aprés un nombre défini de tentatives
d'authentification échouées (typiquement 32), puis impose un délai croissant entre
chaque nouvelle tentative, celui-ci est rénitialisé aprés un certain temps.

Au-dela de cette protection, le TPM 2.0 introduit un systéme de sessions d’autorisation
démarrées via TPM2_StartAuthSession(), divisées en sessions HMAC et sessions Policy.
Les sessions HMAC reposent sur une clé secréte partagée pour authentifier I'utilisateur,
tandis que les sessions Policy permettent de composer des regles complexes combinant
'état des PCR, des contraintes temporelles, des signatures externes ou méme des
localités.

36



Chaque requéte TPM est transmise dans un tampon de commande structuré : un
préambule de dix octets qui inclut notamment les champs tag (type de session),
commandSize et commandCode. Ce découpage permet une hiérarchisation des
commandes.

e Commandes non restreintes : Accessibles sans autorisation préalable,
principalement utilisées pour linterrogation des capacités du TPM (ex.
TPM2_GetCapability, TPM2_GetRandom)

¢ Commandes authentifiées : Requiérent une session d'autorisation valide et sont
utilisées pour les opérations cryptographiques courantes (ex. TPM2_Create,
TPM2_Sign)

e Commandes privilégiées : Réservées aux propriétaires des hiérarchies TPM,
permettent la modification de I'état global du module (ex. TPM2_Clear,
TPM2_HierarchyControl)

e Commandes de maintenance : Utilisables uniquement en mode Field Upgrade
Mode (FUM) pour les mises a jour du firmware

Enfin, la sécurité physique et logique du TPM 2.0 est garantie par une isolation matérielle
renforcée (puce dédiée, stockage non volatile protégé), des mécanismes anti-tampering
et des anti-canaux auxiliaires exigeant des implémentations « constant time » avec en
plus des commandes contrdlées de verrouillage et de réinitialisation de I'état interne. Cet
empilement de protections fait du TPM 2.0 une racine de confiance robuste, capable de
répondre aux exigences des environnements PC, cloud et IoT tout en restant extensible
face aux nouvelles menaces.

4.2 Cas d'usage de protection avec TPM

Le TPM 2.0 offre un ensemble de primitives cryptographiques qui peuvent étre combinées
pour répondre a différents besoins de sécurité. Cette section examine les principaux cas
d'usage ou le TPM apporte une valeur ajoutée significative en termes de protection
matérielle, depuis la sécurisation du processus de démarrage jusqu'a la protection des
données sensibles en passant par les mécanismes d'attestation.

4.2.1 Protection de l'intégrité du firmware

La protection de l'intégrité du firmware constitue I'un des cas d'usage les plus critiques du
TPM 2.0, le TPM offre des mécanismes permettant de détecter toute altération
malveillante du firmware et d'établir une chaine de confiance dés le démarrage.

Le processus de mesure d'intégrité s'inscrit dans le cadre du Secure Boot, ou chaque
composant du firmware est mesuré cryptographiguement avant son exécution. Ces
mesures sont enregistrées dans les registres PCR via des opérations d'extension selon
la formule présentée en section 4.1.1, créant ainsi une chaine de mesures inaltérable qui
refléte fidélement la séquence de démarrage.

La séquence typique de protection comprend :

e L'exécution du code d'initialisation immuable (Root of Trust for Measurement)

37



e Le calcul d'un hachage cryptographique du firmware UEFI/BIOS
e L'extension de cette mesure dans les PCR appropriés
e La mesure récursive de chaque composant suivant dans la chaine

Cette approche, permet de détecter toute modification non autorisée des composants
firmware. En effet, une altération du firmware entrainerait inévitablement une modification
des valeurs enregistrées dans les PCR.

Les standards récents, notamment le RFC 9683 publié par I''ETF en décembre 2024
(« Remote Integrity Verification of Network Devices Containing Trusted Platform
Modules »), soulignent I'importance cruciale de cette premiére mesure effectuée par le
RTM, qui constitue le fondement de toute la chaine de confiance ultérieure.

Au-dela de la simple détection, le TPM permet d'implémenter des mécanismes de
réaction aux compromissions via le « scellement conditionnel ». Cette technique garantit
que les données sensibles, comme les clés de chiffrement de disque, restent
inaccessibles si le firmware a été altéré. Dans le contexte des réseaux d'entreprise, cette
capacité permet de mettre en ceuvre des politiques d'accés, ou seuls les dispositifs
présentant un état firmware validé sont autorisés a accéder aux ressources souhaitées.

Il convient toutefois de noter que la protection TPM reste limitée face a certaines attaques
matérielles. Une compromission au niveau du circuit intégré ou des bus de
communication peut potentiellement contourner ces mécanismes, rappelant I'importance
d'une approche défense en profondeur.

4.2.2 Attestation de I'état systéme

L'attestation représente I'une des fonctionnalités les plus distinctives du TPM 2.0,
permettant a une plateforme de prouver cryptographiquement son état d'intégrité a un
vérificateur distant. Cette capacité prend une importance dans les architectures Zero
Trust ou la confiance ne peut étre présupposée et doit étre continuellement vérifiée.

Le TPM supporte plusieurs formes d'attestation, dont la plus fondamentale est I'attestation
des valeurs PCR. Dans ce processus, le vérificateur émet un défi cryptographique
(nonce) que le TPM doit signer conjointement avec les valeurs actuelles de ses registres
PCR, en utilisant une clé d'attestation (Attestation Identity Key). La signature produite
prouve non seulement l'authenticité du TPM, mais également I'état exact du systéme au
moment de I'attestation.

L'attestation peut également s'étendre aux objets protégés par le TPM, tels que les clés
cryptographiques. Cela permet de certifier qu'une clé particuliere posséde certaines
propriétés (par exemple, qu'elle a été générée au sein du TPM), renfor¢cant ainsi la
confiance dans les opérations cryptographiques réalisées avec cette clé.

Le dernier type d’attestation est I'attestation directe anonyme (Direct Anonymous
Attestation). Cette technique permet a un TPM de prouver qu'il est authentique et non
compromis, sans révéler son identité unique, préservant ainsi la confidentialité de
l'utilisateur.

38



TPM Attestor Verifier

Challenge (KeyID, PCRs, nonce)

Lookup KeylD

Load EK

(EK_HANDLE, Pub)

Load AK

(AK_HANDLE, Pub)

Quote (AK, PCRs, nonce)

Sign (Quote)
Sign (Quote), EventLog
Appraisal
TPM Attestor Verifier

Figure 6 - Diagramme d'attestation avec le TPM : Flux de communication entre le systeme
attesté (Attestor) et le vérificateur (Verifier) montrant les étapes de challenge, signature et
vérification (source : https://tom2-software.qgithub.io/tpm?2-tss/getting-started/2019/12/18/Remote-
Attestation.html,

Dans le contexte des infrastructures cloud, l'attestation TPM joue un rdle dans la
sécurisation des environnements virtualisés. Comme le révélent les documentations des
différents fournisseurs cloud, les vTPM sont désormais largement déployés pour fournir
des garanties d'intégrité aux machines virtuelles, permettant ainsi d'étendre les bénéfices
de l'attestation aux environnements « multi-locataires ». L'attestation a distance permet
aux parties tierces de vérifier I'intégrité de la chaine de démarrage compléte. Celle-ci est
aussi utilisé dans I'architecture Zero Trust comme sur Microsoft Azure qui utilise
I'attestation TPM pour valider l'intégrité des noeuds de calcul avant d'autoriser I'exécution
de charges de travail jugés sensibles.

4.2.3 Scellement de données sensibles

Le scellement de données (sealing) constitue I'un des mécanismes de protection les plus
puissants offerts par le TPM 2.0. Cette fonctionnalité permet de chiffrer des données de
telle sorte qu'elles ne puissent étre déchiffrées que si le systéme se trouve dans un état
d'intégrité spécifique, offrant ainsi une protection contre les attaques visant a extraire des
informations sensibles d'un systéme compromis.

Le processus de scellement associe cryptographiqguement les données protégées a un
ensemble de valeurs PCR cibles, représentant I'état d'intégrité du systéme dans lequel le
descellement (unsealing) sera autorisé. Techniquement, cette association est réalisée en
chiffrant les données avec une clé dérivée des valeurs PCR spécifiées, garantissant ainsi

39


https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html

que seul un systéme présentant ces mémes valeurs PCR pourra réaliser I'opération de
descellement.

CPU(Application) ™™

CPU(Application) TPM
1. Load the sealing object on the TPM
1. Generate sealing-policy TPM2_CC_CreatePrimary
TPM2_CC_Load
(D and E) 2. Start a salted session “tpmkey = EKpub' to protect unsealed data
D: TPM2_CC_PolicyNV <specify Hash(NV-Extend-Secret)>
E: TPM2_CC_PolicyCommandCode = TPM2_CC_Unseal TPM2_CC_StartAuthSession

5 z 3. Start a policy session for NV access with TPM2_CC_PolicyNy.
2. Started a salted session “tpmkey = EKpub
TPM2_CC_StartAuthSession
) TPM2_CC_PolicyCommandCode
TPM2_CC_StartAuthSession TPM2_CC_Policyor

4. Satisty the auth policy for sealing object
3. Choose/encrypt application secret
PolicyAnd(D and E)
*D: PolicyNV <Hash(NV_SECRET), NV-access-policy-session>"
4. Create the sealing object with auth = sealing-policy “E: PolicyCommandCode = TPM2_CC_Unseal"

5. Unseal the data from loaded object

TPM2_CC_CreatePrimary
TPM2_CC_Create Encrypt and send the sealing-blob back to the application

6. Decrypt and consume the sealed data

CPU(Application) TPM
CPU(Application) ™™

Figure 7 - Processus de scellement/descellement TPM - (a) Création d'un objet scellé avec une
politique d'autorisation - (b) Descellement conditionnel des données apres vérification de la
politique et de I'état du systeme (source : https://tpm2-software.qithub.io/2021/02/17/Protecting-
secrets-at-TPM-interface.html)

L'utilisation la plus répandue concerne les solutions Full Disk Encryption (FDE) comme
BitLocker de Microsoft ou LUKS sous Linux. La clé principale est scellée par le TPM et
ne peut étre récupérée que si les composants critiques du systéme n'ont pas été altérés,
protégeant ainsi contre les attaques de démarrage.

Dans les environnements cloud, le scellement TPM joue un réle crucial pour protéger les
clés utilisées dans les enclaves sécurisées et les conteneurs confidentiels, garantissant
que les données sensibles restent inaccessibles méme a l'infrastructure d'hébergement.

Le TPM 2.0 introduit des capacités étendues via les Enhanced Authorization Policies,
permettant de définir des conditions de descellement combinant : Des valeurs PCR
spécifiques (reflétant l'intégrité du systéme), 'authentification utilisateur (PIN, mot de
passe, biométrie), des signatures cryptographiques externes...

Cette flexibilité permet d'implémenter des modeéles de sécurité multicouches adaptés aux
exigences spécifigues de chaque cas d'usage. Par exemple, dans une configuration
d'entreprise, le descellement d'une clé peut nécessiter a la fois un systéme intégre
(vérification PCR), une authentification forte de I'utilisateur (carte d’acces + PIN), et une
validation temporelle (accés uniquement pendant les heures ouvrables). Dans un
environnement industriel déployé sur des dispositifs 10T, le scellement TPM peut garantir
que les clés cryptographiques utilisées pour la communication réseau ne soient
accessibles que si le firmware et les composants critiques n’ont subi aucune altération,
limitant ainsi fortement les possibilités d’une intrusion par des modifications matérielles
ou logicielles non autorisées.

Un défi opérationnel majeur concerne la gestion des mises a jour légitimes. Les
modifications du firmware ou des composants systéme altérent inévitablement les valeurs
PCR, rendant impossible le descellement des données. Des stratégies appropriées
doivent étre mises en place :

40


https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html
https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html

e Descellement temporaire et re-scellement avec les nouvelles valeurs PCR

o Utilisation de politiques flexibles autorisant plusieurs ensembles de PCR valides

e Mécanismes de récupération d'urgence (recovery keys) pour les situations
exceptionnelles

4.3 Limites et vulnérabilités connues

Bien que le modéle de sécurité du TPM 2.0 soit robuste en théorie, de nombreuses
faiblesses d'implémentation existent en pratique. Diverses études récentes mettent en
évidence ces vulnérabilités pratiques, notamment des failles cryptographiques ou
physiques, démontrant ainsi que la sécurité offerte par le TPM n’est efficace que sous
réserve d’'une mise en ceuvre rigoureuse et continue.

4.3.1 Faiblesses d'implémentation

Malgré la robustesse théorique de son modéle de sécurité, le TPM 2.0 n'est pas exempt
de faiblesses d'implémentation qui peuvent compromettre significativement les garanties
qu'il est censé fournir.

Au-dela des attaques par canaux auxiliaires comme TPM-FAIL décrites précédemment
(voir section 3.2.2), I'écosystéme TPM 2.0 a révélé une multiplicité de vulnérabilités
d'implémentation affectant différentes couches du systéme. Une vaste étude de Svenda
[TPMScan 2024] a révélé une grande variabilit¢ dans la qualité des implémentations
disponibles sur le marché. L'étude a notamment identifié des déficiences dans la
génération de nombres aléatoires de certains TPM, rendant potentiellement vulnérables
I'ensemble des opérations cryptographiques qui en dépendent.

En 2023, des chercheurs de Quarkslab ont découvert deux vulnérabilités majeures (CVE-
2023-1017 et CVE-2023-1018) dans l'implémentation de référence du TPM 2.0 fournie
par le Trusted Computing Group. Ces vulnérabilités, respectivement de type
dépassement de tampon en écriture et en lecture, peuvent étre déclenchées par des
applications en mode utilisateur envoyant des commandes TPM 2.0, plus particulierement
la fonction CryptParameterDecryption() qui est utilisé pour traiter les paramétres chiffrés
des commandes TPM. Selon l'analyse de SecurityWeek, cette faille permettait & un
attaquant authentifié disposant d'un accés local d'accéder en lecture a des données
sensibles ou de remplacer des données normalement protégées par le TPM, comme les
clés cryptographiques. L'impact potentiel inclut la divulgation d'informations sensibles,
I'élévation de privileéges, et dans certains cas, I'exécution arbitraire de code au sein du
TPM. [Falcon 2023]

Comme I'a révélé la publication détaillée de Quarkslab, ces failles affectent
potentiellement des milliards d'appareils, y compris des TPM matériels et des
implémentations logicielles utilisées dans les solutions de virtualisation majeures comme
VMware, Microsoft Hyper-V et QEMU. [Falcon 2023]

Au-dela des vulnérabilités purement cryptographiques, des faiblesses ont également été
identifiées dans la mise en ceuvre des mécanismes de protection physique des TPM. Bien
que congus pour résister aux tentatives d'extraction physique d'informations, certains

41



TPM se sont révélés vulnérables a des techniques avancées d'analyse invasive, telles
que l'analyse par sonde électromagnétique ou la microscopie a faisceau d'ions focalisés
[Forgette 2022]. Ces vulnérabilités remettent en question I'hypothése fondamentale selon
laquelle les secrets stockés dans le TPM demeurent inaccessibles méme face a un
attaquant disposant d'un acceés physique au dispositif.

Les implémentations firmware du TPM (fTPM), qui exécutent les fonctionnalités TPM au
sein d'environnements d'exécution sécurisés comme Intel SGX ou ARM TrustZone plutot
que dans un composant matériel dédié, présentent leurs propres vulnérabilités
spécifiques. Ces implémentations héritent potentiellement des vulnérabilités de leur
environnement d'exécution sous-jacent, comme I'ont démontré diverses attaques contre
les technologies d'enclaves sécurisées [Raj 2016]. En 2022, AMD a d'ailleurs annoncé
que leur implémentation fTPM pouvait, causer des problémes de performance,
nécessitant une mise a jour du BIOS pour y remédier.

4.3.2 Contournements pratiques

Au-dela des faiblesses d'implémentation intrinséques au TPM lui-méme, diverses
techniques de contournement pratique ont été développées pour neutraliser les
protections offertes par le TPM 2.0, notamment dans le contexte de la sécurisation du
processus de démarrage et de la protection des données. Comme l'ont souligné plusieurs
chercheurs [Svenda 2024], le modéle de sécurité du TPM repose sur I'hypothése
fondamentale que tous les composants de la chaine de démarrage jusqu'au point de
mesure sont exempts de vulnérabilités, une hypothése irréaliste dans les systémes.

Les TPM sont généralement connectés au systéme principal sur des bus standardisés
(SPI, 12C ou LPC). Des attaquants peuvent intercepter ou modifier les communications
sur ces bus, potentiellement en injectant des commandes malveillantes ou en capturant
des informations sensibles. Bien que ces attaques nécessitent un accés physique, elles
peuvent compromettre fondamentalement la sécurité du systeme TPM [Svenda 2024].

Une approche de contournement concerne les attaques de réinitialisation des PCR. Dans
certaines configurations, un attaquant disposant de privileges administratifs peut forcer la
réinitialisation du TPM sans redémarrer le systéme, effacant ainsi les mesures d'intégrité
enregistrées dans les PCR. Cette manipulation peut permettre de contourner les
mécanismes de scellement conditionnés aux valeurs PCR, comme I'a démontré Forgette
[Forgette 2022] dans sa présentation « TPM is not the holy way ».

Les attaques par démarrage a froid (Cold Boot Attacks), attaques nécessitant un
refroidissement physique de la mémoire (typiquement avec de I'azote liquide) permettent
de prolonger la persistance des données et permettre leur extraction. Cette technique
permet de récupérer les clés de chiffrement une fois qu'elles ont été déchiffrées par le
TPM et quand elles sont chargées en mémoire principale.

Les implémentations de TPM virtuel (vTPM) présentent des vecteurs de contournement
spécifiques. Si I'hyperviseur qui héberge le vTPM est compromis, toutes les garanties de
sécurité offertes par le vIPM peuvent étre invalidées. Cette vulnérabilité est
particulierement préoccupante dans les environnements cloud ou les TPM virtuels sont

42



fréquemment utilisés pour fournir des garanties d'intégrité aux machines virtuelles [Arthur
2015]. Les chercheurs de Quarkslab ont d'ailleurs démontré que les vulnérabilités qu'ils
ont découvertes dans l'implémentation de référence du TPM 2.0 affectaient les principales
solutions de virtualisation, révélant ainsi un risque d'évasion de machine virtuelle. Dans
les environnements cloud, les vTPM introduisent des défis de sécurité supplémentaires
liés au partage des ressources physiques. Les attaques de type "cross-VM" peuvent
potentiellement exploiter les canaux cachés entre machines virtuelles partageant le
méme matériel physique pour comprometire l'isolation de ses machines. Cette
problématique est particulierement critique dans les offres de cloud public ou l'utilisateur
n’a aucun contréle sur l'infrastructure dont il dépend.

Cette limitation est particulierement problématique dans le contexte des attaques "Time-
of-Check to Time-of-Use" (TOCTOU), ou un attaquant peut compromettre le systéme
entre le moment de la mesure d'intégrité et I'utilisation effective des ressources protégées.
Le TPM ne peut garantir l'intégrité que jusqu'au moment de la mesure, sans aucune
protection contre les compromissions ultérieures. Méme un TPM parfaitement sécurisé
ne peut garantir la sécurité globale d'un systéme si ce dernier présente des vulnérabilités
au niveau du firmware UEFI/BIOS, du chargeur d'amorgage ou du systéme d'exploitation.

L'analyse des vulnérabilités du TPM 2.0 révéle un paradoxe fondamental : ce composant
censé sécuriser l'ensemble du systeme introduit lui-méme de nouvelles surfaces
d'attaque. Les vulnérabilités identifiées, allant des faiblesses cryptographiques aux
erreurs d'implémentation, illustrent la difficulté a créer un composant de sécurité
véritablement infaillible. Microsoft ayant imposé ['utilisation du TPM en 2021, comme
composant de sécurité obligatoire pour Windows 11, quand ce composant lui-méme a été
affecté par des vulnérabilités critiques.

Ces contournements pratiques illustrent une réalité fondamentale de la sécurité
informatique : aucun mécanisme de protection isolé, ne peut garantir une sécurité
absolue. Une approche de défense en profondeur, combinant différentes technologies de
protection et pratiques de sécurité, reste indispensable pour établir un niveau de sécurité
robuste face a des adversaires déterminés.

4.4 Synthése critique des forces et faiblesses du TPM 2.0

Avant de conclure ce mémoire, il est essentiel de réaliser une synthése structurée des
capacités et limites du TPM 2.0, permettant d'identifier clairement ses domaines
d'efficacité et ses points de vulnérabilité.

4.4.1 Forces du TPM 2.0: contextes d'efficacité

Le TPM 2.0 offre une protection significative dans plusieurs scénarios d'attaque, bien que
cette protection soit soumise a certaines conditions :

Protection contre les attaques logicielles conventionnelles : Le TPM offre une protection
significative pour les clés cryptographiques et secrets contre les attaques purement
logicielles, méme avec des privileges élevés dans le systéeme d'exploitation. Les
opérations  cryptographiques critiques peuvent s'exécuter entierement dans

43



I'environnement isolé du TPM, sans jamais exposer les clés privées a la mémoire
principale. Toutefois, I'efficacité réelle dépend fortement de la qualité d'implémentation
des applications qui interagissent avec le TPM, certaines pouvant inadvertamment
exposer des données sensibles en mémoire aprés utilisation.

Préservation de l'intégrité du démarrage : La capacité de mesure et d'attestation du TPM
permet de détecter efficacement les modifications non autorisées du firmware et des
composants de démarrage. Cette vérification d'intégrité établit une premiére ligne de
défense contre les bootkits et les rootkits. Il convient cependant de noter que le TPM
détecte mais n'empéche pas I'exécution de code malveillant, il conditionne simplement
l'accés aux données protégées a l'intégrité du systéeme.

Protection conditionnelle des données : Le mécanisme de scellement garantit que les
données sensibles (comme les clés de chiffrement de disque) restent inaccessibles si le
systéme a été altéré, offrant une protection méme en cas de vol physique du dispositif.
Cette protection demeure efficace contre les attaquants disposant de compétences et de
ressources limitées, mais présente des vulnérabilités face aux attaques logiques
exploitant la fenétre temporelle entre le descellement et |'utilisation des données.

Attestation a distance fiable : Le TPM permet de prouver cryptographiquement I'état
d'intégrité d'un systéme a un vérificateur distant, facilitant la mise en ceuvre de politiques
de sécurité basées sur I'état réel du systeme plutdét que sur des présomptions de
confiance. Cette capacité reste particulierement précieuse dans les architectures Zero
Trust, bien qu'elle ne refléte que I'état du systéme au moment précis de I'attestation.

4 4.2 Faiblesses du TPM 2.0: scénarios de vulnérabilité

Malgré ses capacités, le TPM présente plusieurs limitations fondamentales :

Le TPM offre une résistance limitée face a un attaquant disposant d'un accées physique
prolongé et d'équipements spécialisés. Les attaques par canaux auxiliaires (analyse de
consommation, émissions électromagnétiques), les attaques par injection de fautes, et
l'interception des bus de communication (SPI, LPC) peuvent compromettre son isolation.

Hypothése d'intégrité initiale non garantie : Le modéle de sécurité du TPM repose sur
l'intégrité du premier code exécuté (CRTM - Core Root of Trust for Measurement). Si ce
composant est compromis avant la premiére mesure, toute la chaine de confiance
s'effondre sans possibilité de détection. Des mécanismes comme le DRTM tentent
d'atténuer ce probléme en établissant une racine de confiance aprés le démarrage initial,
mais présentent leurs propres limitations et peuvent étre contournés par des attaques
sophistiquées.

Vulnérabilités d’implémentation : Comme l'ont démontré les failles TPM-FAIL et les
vulnérabilitétss CVE-2023-1017/1018, méme un composant de sécurité critique peut
contenir des défauts d'implémentation significatifs qui compromettent son modéle de
sécurité théorique. Ces vulnérabilités, souvent découvertes bien aprés le déploiement
massif, affectent potentiellement des millions de systémes et compliquent la mise en
place de correctifs a grande échelle.

44



Protection temporelle limitée : Le TPM ne peut garantir qu'un instantané d'intégrité au
moment de la mesure, créant une fenétre de vulnérabilitt TOCTOU. Un systéme vérifié
comme intégre peut étre compromis immédiatement aprés I'attestation.

Isolation imparfaite des implémentations non discretes : Les fTPM et vTPM héritent des
vulnérabilités de leur environnement d'exécution sous-jacent (processeur, hyperviseur),
compromettant potentiellement leur isolation.

Le TPM se révele particulierement inefficace dans les scénarios suivants :

1. Attaques avec accés physique : Un attaquant disposant d'équipements spécialisés
(microscopes électroniques, stations de micro-sondage, générateurs d'impulsions
électromagnétiques) peut contourner la plupart des protections du TPM.

2. Compromission précoce de la chaine de démarrage : Une modification du firmware
avant la premiére mesure ou une corruption du CRTM annule l'efficacité de toute la
chaine de confiance, un vecteur particulierement exploité par les attaques voulant
cibler des infrastructures critiques.

3. Attaques transitives via des périphériques connectés : Les contréleurs DMA (cartes
réseau, GPU) peuvent contourner les protections logicielles et accéder directement
a la mémoire, y compris aux zones contenant temporairement des clés descellées
par le TPM, méme sur des systemes correctement configurés si I'"OMMU présente
des vulnérabilités.

4. Environnements virtualisés partagés : Dans les infrastructures cloud utilisant des
VvTPM, les attaques inter-VM ou les compromissions de I'hyperviseur peuvent
neutraliser l'isolation du TPM virtuel.

5. Gestion de mises a jour : Les modifications normales du systeme (mises a jour
firmware ou OS) altérent les valeurs PCR, nécessitant des mécanismes de migration
des données scellées qui créent souvent de nouvelles vulnérabilités.

Cette analyse confirme que le TPM 2.0, malgré ses capacités cryptographiques robustes,
doit étre considéré comme un élément nécessaire mais non suffisant d'une architecture
de sécurité défensive en profondeur. Sa valeur réside dans sa contribution a élever
considérablement le niveau de difficulté des attaques, particulierement celles d'origine
logicielle. Pour certains modéles de menace bien définis et limités, notamment face a des
attaquants sans ressources significatives ou sans accés physique, le TPM peut fournir
des garanties adéquates. Cependant, il ne représente pas une solution ultime face aux
attaquants déterminés disposant de ressources significatives ou d'un accés physique,
méme relativement bref.

45



Conclusion

5. Conclusion

Dans le cadre de ce mémoire, nous avons exploré en profondeur les menaces
émergentes ciblant les couches matérielles et firmwares des systémes informatiques
modernes, avec une analyse comparative spécifique des mécanismes de protection
déployés sur les plateformes x86/x64 et les systémes embarqués (ARM/RISC-V). Cette
étude s'est particulierement concentrée sur le Trusted Platform Module 2.0 (TPM 2.0), en
examinant son réle critique dans la protection des systémes a bas niveau.

Nous avons d'abord dressé une cartographie des attaques matérielles et firmwares,
soulignant la sophistication croissante des menaces comme les bootkits UEFI, les
injections de fautes, les attaques par canaux auxiliaires et les vulnérabilités liées aux
interfaces matérielles telles que DMA et JTAG. Cette analyse a révélé que les menaces
évoluent constamment et exploitent souvent les limites structurelles des mécanismes de
défense traditionnels.

Notre étude comparative a ensuite permis d'établir les spécificités et les contraintes
inhérentes a chaque catégorie de systémes. Tandis que les plateformes conventionnelles
bénéficient de ressources matérielles et énergétiques significatives permettant
l'intégration de mécanismes de sécurité avancés comme Secure Boot et TPM discret
(dTPM), les systemes embarqués doivent composer avec des contraintes strictes,
nécessitant des solutions optimisées telles qu'ARM TrustZone, RISC-V PMP, I'utilisation
des Secure Elements et des enclaves sécurisées.

Le TPM 2.0 s’est avéré étre un élément central dans la création d’une chaine de confiance
robuste, capable de garantir lintégrité du firmware & travers des mécanismes
cryptographiques solides tels que la mesure d’intégrité et le scellement des données
sensibles. Cependant, nous avons également mis en évidence des vulnérabilités
notables, tant dans les implémentations matérielles que dans les variantes logicielles du
TPM. Des faiblesses d’'implémentation aux contournements pratiques via les bus de
communication, ces limitations rappellent I'importance d'une stratégie de défense en
profondeur plutdt que d'une dépendance exclusive a un composant de sécurité unique.

L'évolution rapide des architectures matérielles et I'émergence de nouvelles classes
d'attaques suggérent plusieurs axes de recherche prometteurs : L'impact de
l'informatique quantique sur les mécanismes de protection actuels, notamment les
primitives cryptographiques du TPM, l'intégration de mécanismes d'intelligence artificielle
pour la détection proactive des attaques matérielles.

46



En conclusion, bien que le TPM 2.0 constitue une avancée significative dans la
sécurisation des systémes, il ne saurait suffire seul face a la complexité actuelle des
menaces matérielles et firmware. Seule une approche intégrée, adaptative et multicouche
pourra répondre efficacement aux défis sécuritaires de demain, ouvrant ainsi de
nombreuses perspectives pour les recherches futures en cybersécurité matérielle.

47



Glossaire

6. Glossaire

ARM Advanced RISC Machine

BIOS Basic Input/Output System

DMA Direct Memory Access

dTPM discrete Trusted Platform Module
DRTM Dynamic Root of Trust for Measurement
EMFI Electromagnetic Fault Injection

fTPM firmware Trusted Platform Module

12C Inter-Integrated Circuit

loT Internet of Things

JTAG Joint Test Action Group

KEK Key Exchange Key

LPC Low Pin Count

MQTT Message Queuing Telemetry Transport
PCR Platform Configuration Register

PK Platform Key

RISC-V Reduced Instruction Set Computer - Five
RoT Root of Trust

SE Secure Element

SoC System On a Chip

SPI Serial Peripheral Interface

TEE Trusted Execution Environment
TOCTOU Time-of-Check to Time-of-Use

TPM Trusted Platform Module

48



UEFI

Unified Extensible Firmware Interface

vTPM

virtual Trusted Platform Module

49



Références

7. Référence

1.

10.

[AutoFirm 2024] YongLe Chen AutoFirm: Automatically Identifying Reused
Libraries inside loT Firmware at Large-Scale https://arxiv.org/abs/2406.12947
[Amacher 2019] Julien Amacher, Valerio Schiavoni. On the Performance of ARM
TrustZone. 19th IFIP Interna tional Conference on Distributed Applications and
Interoperable Systems (DAIS), Jun 2019, Kongens Lyngby, Denmark. pp.133-
151, 10.1007/978-3-030-22496-7_9. hal-02319569 https://inria.hal.science/hal-
02319569v1/document

[ANSSI 2019] Agence nationale de la sécurité des systémes d'information,
Exigences de sécurité matérielle pour plate-forme x86, Version 1.0, 2019.
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-quide-

exigences_securite _materielle.pdf

[Arthur 2015] Arthur, W., Challener, D., & Goldman, K., A Practical Guide to TPM
2.0: Using the Trusted Platform Module in the New Age of Security, Apress, 2015.
https://link.springer.com/book/10.1007/978-1-4302-6584-9

[Bakhshi 2024] Bakhshi, T., Ghita, B., & Kuzminykh, 1., A review of loT firmware
vulnerabilities and auditing techniques, Sensors 2024, 24, 708
https://www.mdpi.com/1424-8220/24/2/708

[Bitdefender 2024] Bitdefender, New side-channel attack targets Intel 13th and
14th gen CPUs https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-
channel-attack-targets-intel-13th-and-14th-gen

[Dehbaoui 2012] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, Assia
Tria. Electromagnetic Transient Faults Injection on a hardware and software
implementations of AES. FDTC 2012, Sep 2012 https://hal-
emse.ccsd.cnrs.fr/lemse-

00742639v1/file/HAL FDTC2012 Electromagnetic Transient Faults Injection
on_a hardware_and_software _implementations_of AES.pdf

Protecting System Firmware Storage htips://eclypsium.com/blog/protecting-
system-firmware-storage/, consulté en 2025

[Eclypsium 2023] BMC&C: Lights Out Forever
https://eclypsium.com/research/bmcc-lights-out-forever/

[ENISA 2023] European Union Agency for Cybersecurity, ENISA Threat
Landscape 2023, 2023.

50


https://arxiv.org/abs/2406.12947
https://inria.hal.science/hal-02319569v1/document
https://inria.hal.science/hal-02319569v1/document
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-guide-exigences_securite_materielle.pdf
https://cyber.gouv.fr/sites/default/files/2019/11/anssi-guide-exigences_securite_materielle.pdf
https://link.springer.com/book/10.1007/978-1-4302-6584-9
https://www.mdpi.com/1424-8220/24/2/708
https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-channel-attack-targets-intel-13th-and-14th-gen
https://www.bitdefender.com/en-us/blog/hotforsecurity/new-side-channel-attack-targets-intel-13th-and-14th-gen
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://hal-emse.ccsd.cnrs.fr/emse-00742639v1/file/HAL_FDTC2012_Electromagnetic_Transient_Faults_Injection_on_a_hardware_and_software_implementations_of_AES.pdf
https://eclypsium.com/blog/protecting-system-firmware-storage/
https://eclypsium.com/blog/protecting-system-firmware-storage/
https://eclypsium.com/research/bmcc-lights-out-forever/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%?2
OLandscape%202023.pdf

[ESET 2018] ESET Research, LoJax: First UEFI rootkit found in the wild, courtesy
of the Sednit group, 2018. https://web-assets.esetstatic.com/wls/2018/09/Eset-
LoJax.pdf

[ESET 2024] ESET, UEFI Secure Boot bypass vulnerability, 2024.
https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-
UEFI-Secure-Boot-bypass-vulnerability

[Falcon 2023] Vulnerabilities in the TPM 2.0 reference implementation code, 2023
https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-
implementation-code.html

[Forgette 2022] Forgette, B., TPM is not the holy way, 2022.
https://www.sstic.org/media/SSTIC2022/SSTIC-

actes/tpom_is_not the holy way/SSTIC2022-Article-tpm_is_not the holy way-
forgette 7RUa27n.pdf

[Frigo 2020] Frigo, P, TRRespass: Exploiting the Many Sides of Target Row
Refresh, 2020. https://download.vusec.net/papers/trrespass_sp20.pdf

[ISO 2015] ISO/IEC 11889:2015, Information technology — Trusted platform
module library. https://trustedcomputinggroup.org/resource/tpm-library-
specification/

[Jattke 2022] Jattke, P., Van Der Veen, V., Frigo, P., Gunter, S., & Razavi, K.,
BLACKSMITH: Scalable Rowhammering in the Frequency Domain, 2022.
https://doi.org/10.1109/SP46214.2022.9833772

[Jerinsunny 2024] Jerin Sunny, STM32 VGlitch — Voltage Fault Injection on
STM32, https://jerinsunny.qgithub.io/stm32_vglitch/

[Kocher 1996] Kocher P, Timing Attacks on Implementat ions of Diffie-Hellman,
RSA, DSS, and Other Systems, 1996
https://link.springer.com/chapter/10.1007/3-540-68697-5 9

[Kim 2014] Kim, Y., Daly, R., Kim, J., et al., Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM Disturbance Errors, ISCA,
Juin 2014. https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
[Matrosov 2019] Matrosov, A., Rodionov, E., & Bratus, S., Rootkits and Bootkits:
Reversing Modern Malware and Next Generation Threats, No Starch Press,
2019. https://nostarch.com/rootkits

[Meltdown 2018] Moritz Lipp, Michael Schwarz, Daniel Gruss Meltdown: Reading
Kernel Memory from User Space htips://meltdownattack.com/meltdown.pdf
[Mitchell 2022] Robin Mitchell, 33 Critical Vulnerabilities Found in Popular loT
Protocol MQTT https://www.electropages.com/blog/2022/02/researchers-find-
matt-have-33-vulnerabilities

[MITRE 2025] MITRE Corporation, Technique T1542: Pre-OS Boot, ATT&CK
Framework. https://attack.mitre.org/techniques/T1542/

[NIST 2018] NIST, SP 800-193 - Platform Firmware Resiliency Guidelines, 2018.
https://csrc.nist.gov/pubs/sp/800/193/final

51


https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%20Landscape%202023.pdf
https://www.enisa.europa.eu/sites/default/files/publications/ENISA%20Threat%20Landscape%202023.pdf
https://web-assets.esetstatic.com/wls/2018/09/Eset-LoJax.pdf
https://web-assets.esetstatic.com/wls/2018/09/Eset-LoJax.pdf
https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-UEFI-Secure-Boot-bypass-vulnerability
https://www.techtarget.com/searchsecurity/news/366618102/ESET-details-UEFI-Secure-Boot-bypass-vulnerability
https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-implementation-code.html
https://blog.quarkslab.com/vulnerabilities-in-the-tpm-20-reference-implementation-code.html
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://www.sstic.org/media/SSTIC2022/SSTIC-actes/tpm_is_not_the_holy_way/SSTIC2022-Article-tpm_is_not_the_holy_way-forgette_7RUa27n.pdf
https://download.vusec.net/papers/trrespass_sp20.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://doi.org/10.1109/SP46214.2022.9833772
https://jerinsunny.github.io/stm32_vglitch/
https://link.springer.com/chapter/10.1007/3-540-68697-5_9
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://nostarch.com/rootkits
https://meltdownattack.com/meltdown.pdf
https://www.electropages.com/blog/2022/02/researchers-find-mqtt-have-33-vulnerabilities
https://www.electropages.com/blog/2022/02/researchers-find-mqtt-have-33-vulnerabilities
https://attack.mitre.org/techniques/T1542/
https://csrc.nist.gov/pubs/sp/800/193/final

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

[Raj 2016] Raj, H., Saroiu, S., Wolman, A., et al., fTPM: A software-only
implementation of a TPM chip, USENIX Security Symposium, Aolt 2016.
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_r
aj.pdf

[RISC-V 2025], RISC-V Physical Memory Protection (PMP) documentation
https://sifive.github.io/freedom-metal-docs/devguide/pmps.html

[Spectre 2019] Paul Kocher, Spectre Attacks: Exploiting Speculative Execution
https://spectreattack.com/spectre.pdf

[Chifflier 2019] SSTIC, UEFI et bootkits PCl : étude de cas, 2019.
https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-

bootkits _sstic_article fr.pdf

[Thunderbolt 2020] Thunderbolt Flaws Expose Millions of PCs to Hands-On
Hacking, consulté en 2025 htips://www.wired.com/story/thunderspy-thunderbolt-
evil-maid-hacking/

[TPM-FAIL 2020] TPM-FAIL : TPM meets Timing and Lattice Attacks, Daniel
Moghimi and Berk Sunar and Thomas Eisenbarth and Nadia Heninger, 2020
https://tpm.fail/

[TPMScan 2024] Petr Svenda, Antonin Dufka, Milan Broz, Roman Lacko, Tomas
Jaros, Daniel Zatovicand Josef Pospisil TPMScan: A wide-scale study of security-
relevant properties of TPM 2.0 chips
https://www.researchgate.net/publication/378944595 TPMScan_ A wide-
scale_study of security-relevant properties of TPM 20 chips

[Xeno] Xeno Kovah, BIOS and SMM Internals — SPI Flash Protection
Mechanisms, OpenSecurity Training.

https://opensecuritytraining.info/IntroBIOS files/Day2 03 Advanced%20x86%2
0-%20B10S%20and%20SMM%20Internals%20-
%20SP1%20Flash%20Protection%20Mechanisms.pdf

Wikipedia, Elément sécurisé, consulté en 2025
https://fr.wikipedia.org/wiki/%C3%891%C3%A9ment s%C3%A9curis%C3%A9
[Vishwakarma 2018] Vishwakarma, G., Exploiting JTAG and Its Mitigation in IOT:
A Survey https://www.mdpi.com/1999-5903/10/12/121

52


https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://sifive.github.io/freedom-metal-docs/devguide/pmps.html
https://spectreattack.com/spectre.pdf
https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-bootkits_sstic_article_fr.pdf
https://cyber.gouv.fr/sites/default/files/IMG/pdf/uefi-pci-bootkits_sstic_article_fr.pdf
https://www.wired.com/story/thunderspy-thunderbolt-evil-maid-hacking/
https://www.wired.com/story/thunderspy-thunderbolt-evil-maid-hacking/
https://tpm.fail/
https://www.researchgate.net/publication/378944595_TPMScan_A_wide-scale_study_of_security-relevant_properties_of_TPM_20_chips
https://www.researchgate.net/publication/378944595_TPMScan_A_wide-scale_study_of_security-relevant_properties_of_TPM_20_chips
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_03_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Flash%20Protection%20Mechanisms.pdf
https://fr.wikipedia.org/wiki/%C3%89l%C3%A9ment_s%C3%A9curis%C3%A9
https://www.mdpi.com/1999-5903/10/12/121

