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Résumé 

Ce mémoire examine l'évolution des cyberattaques ciblant les couches basses des 

systèmes informatiques et analyse comparativement les mécanismes de protection 

déployés sur les plateformes x86/x64 et les systèmes embarqués (ARM/RISC-V), avec 

un focus particulier sur le Trusted Platform Module 2.0 (TPM 2.0). 

Notre étude établit que la sécurité informatique, historiquement concentrée sur les 

couches logicielles supérieures, révèle ses limites face à l'émergence d'attaques visant 

le firmware et le matériel. L'analyse des menaces démontre une évolution vers des 

techniques d'exploitation persistantes et furtives, telles que les rootkits UEFI, les bootkits 

contournant le Secure Boot, les attaques par corruption mémoire, les injections de fautes 

matérielles, et les exploitations d'interfaces. Pour les systèmes embarqués et IoT, nous 

identifions des vulnérabilités spécifiques liées aux contraintes énergétiques et aux 

longues durées de vie opérationnelle de ces appareils. 

Notre analyse comparative des architectures de protection révèle des différences entre 

ces dites plateformes. Les systèmes x86/x64 privilégient des solutions comme le Secure 

Boot, des sécurités intégrées en plus dans les processeurs, et l'intégration du TPM sous 

diverses formes (dTPM, fTPM, vTPM). Les systèmes embarqués adoptent des approches 

adaptées à leurs contraintes, avec des architectures spécifiques. Sans oublier l’ajout des 

Secure Elements et enclaves sécurisées. Ces mécanismes s'articulent autour de 

principes fondamentaux : racines de confiance matérielles et isolation des 

environnements d'exécution. 

L'étude approfondie du TPM 2.0 met en lumière son rôle central dans la sécurisation du 

processus de démarrage et la protection des données sensibles via ses fonctionnalités 

de mesure d'intégrité, d'attestation et de scellement cryptographique. Cependant, notre 

analyse critique identifie des vulnérabilités significatives : faiblesses d'implémentation, 

attaques par canaux auxiliaires et contournements pratiques. Ces limitations remettent 

en question l'efficacité du TPM comme solution unique de protection. 

Ce travail conclut que malgré l'importance du TPM 2.0 dans l'établissement d'une chaîne 

de confiance, aucun mécanisme isolé ne peut garantir une sécurité complète face à 

l'évolution rapide des menaces.  
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Introduction 

1. Introduction 

1.1 Contexte et motivations 

La sécurité des systèmes informatiques a longtemps été abordée principalement comme 

une problématique logicielle, où les mécanismes de protection s'appuient essentiellement 

sur les couches supérieures (applications, systèmes d'exploitation). Cette approche, bien 

qu’ayant démontré son efficacité pour contrer certaines catégories de menaces, elle 

révèle aujourd'hui ses limites face à l'évolution rapide et continue des cyberattaques, qui 

ciblent désormais les couches les plus profondes des systèmes. L'ENISA (European 

Union Agency for Cybersecurity) a souligné dans ses rapports annuels sur les menaces 

du monde de la cybersécurité, cette évolution vers des attaques plus sophistiquées visant 

les couches basses des systèmes [ENISA 2023]. 

Longtemps ignorées ou sous-estimées, les firmwares, interfaces critiques situées entre 

le matériel et le logiciel, constitue un vecteur d'attaque privilégié par les acteurs 

malveillants. Un firmware compromis offre aux attaquants un contrôle quasi-complet du 

système, avec une capacité d’attaque où les mécanismes de protection logiciels et les 

tentatives de suppression standard sont inefficaces. Des cas emblématiques comme celui 

du rootkit UEFI (Unified Extensible Firmware Interface) LoJax, documenté par les 

chercheurs d'ESET en 2018, ont démontré la faisabilité d'implants malveillants persistants 

capables de survivre aux réinstallations complètes du système d'exploitation [ESET 

2018]. Cette menace s'avère particulièrement critique pour les systèmes embarqués qui, 

soumis à des contraintes strictes en matière d'énergie et de ressources, se trouvent 

fréquemment dépourvus de protections contre ces attaques de bas niveau. 

Face à ce changement notable du paysage des menaces informatiques, la sécurité 

matérielle émerge comme un impératif stratégique incontournable. L'approche dite de 

sécurité par conception (« Security by Design »), intégrant des mécanismes de 

protections matériels et logiciels, devenant essentielle pour établir une racine de 

confiance (« Root of Trust ») capable de garantir l’intégrité et la résilience globale du 

système. Le NIST (National Institute of Standards and Technology) a formalisé cette 

approche dans sa publication 800-193 « Platform Firmware Resiliency Guidelines » [NIST 

2018]. Ce document fournit des recommandations techniques pour renforcer la résilience 

du firmware contre les attaques potentiellement destructrices. Dans le même esprit, 

L'Agence Nationale de Sécurité des Systèmes d'Information (ANSSI) a publié ses 

recommandations relatives à la sécurité matérielle sur plateformes x86 [ANSSI 2019]. Ce 
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guide présente des exigences de sécurité s'appliquant aux dispositifs matériels, 

préconisant notamment l'implémentation systématique d'un TPM (Trusted Platform 

Module) version 2.0, la configuration du BIOS/UEFI en mode Secure Boot, ainsi que le 

déploiement de mécanismes avancés de journalisation et d'audit du firmware. 

L'adoption massive du TPM 2.0 (standardisé par la norme internationale ISO/IEC 

11889:2015), désormais imposé par Microsoft comme matériel obligatoire pour installer 

son dernier système d’exploitation Windows, semble représenter une avancée majeure 

dans le domaine de la sécurité matérielle. 

1.2 Problématique et objectifs 

1.2.1 Problématique 

La multiplication des attaques de bas niveau visant le firmware, qu’il s’agisse du 

Basic Input Output System (BIOS) historique ou, plus récemment, de l’UEFI, remet en 

cause l’hypothèse présupposé d’un matériel implicitement fiable. La vérification d'intégrité 

de ce code de bas niveau doit pouvoir s’appuyer sur un composant, créant ainsi une 

première vulnérabilité structurelle.  

Cette problématique s'accentue lorsqu'on compare les systèmes généralistes aux 

architectures embarquées. Les premiers, dominés par l'écosystème x86/64, bénéficient 

de ressources matérielles conséquentes permettant l'intégration de mécanismes de 

protection (virtualisation matérielle, environnement d’exécution isolée). À l'inverse, les 

dispositifs embarqués (IoT, objets connectés) fondés principalement sur des architectures 

ARM ou RISC-V doivent concilier sécurité et contraintes strictes (consommation 

énergétique, mémoire limitée, et l’environnement où le système est utilisé). Ces 

différences imposent des stratégies de protection différentes, adaptées aux spécificités 

et aux limitations propres à chaque plateforme. 

Le TPM 2.0 se présente comme un composant pivot pour ancrer la confiance, assurant 

une attestation de l’état système actuelle. Cependant, ses différentes formes, TPM discret 

(dTPM), TPM firmware (fTPM), TPM virtuel (vTPM), introduisent chacune des hypothèses 

de menace différentes : le dTPM, bien qu'isolé physiquement, expose une surface 

d'attaque matérielle via ses bus de communication (ex. interception de signaux sur puce), 

tandis que les implémentations logicielles (vTPM) soulèvent des questions 

fondamentales quant à leur isolation. Ces différentes implémentations et leurs 

implications sécuritaires seront analysées en détail dans la section 3.2.2. 

1.2.2 Objectifs 

Compte tenu de la complexité croissante des attaques bas niveau sur les firmwares et 

les architectures matérielles, ce mémoire se concentre sur une analyse approfondie des 

vulnérabilités associées et des mécanismes de défense qui en découlent.  

Le premier objectif vise à dresser un panorama détaillé des vulnérabilités spécifiques aux 

firmwares et aux composants matériels des plateformes conventionnelles (x86/x64) et 

des systèmes embarqués (ARM, RISC-V). Cette démarche analytique permettra 
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d'identifier précisément les vecteurs d'attaque privilégiés selon les spécificités 

architecturales. Seront particulièrement étudiées les attaques ciblant l'intégrité du 

firmware (notamment via l'UEFI), les injections de fautes matérielles, les exploitations des 

interfaces critiques (DMA, JTAG, SPI) et les attaques par canaux auxiliaires (side-

channel). 

Le second objectif, central à notre analyse, concerne l'évaluation critique du TPM 2.0 en 

tant qu'élément fondamental de protection des systèmes modernes. Nous comparerons 

les différentes variantes d'implémentation du TPM (dTPM, fTPM, vTPM) en examinant 

leur efficacité face aux vecteurs d’attaques identifiés précédemment. Cette comparaison 

reposera sur une analyse détaillée des spécifications techniques publiées par le Trusted 

Computing Group et des vulnérabilités récentes documentées, notamment les failles 

cryptographiques, les attaques temporelles et les faiblesses d'implémentation spécifiques 

révélées par la communauté scientifique. Une attention particulière sera portée aux 

contraintes techniques et opérationnelles propres à chaque type de plateforme, 

permettant ainsi d’établir un cadre comparatif, visant à déterminer la pertinence des 

différentes implémentations du TPM. 

Enfin, à titre exploratoire, ce mémoire propose une réflexion sur les architectures de 

sécurité matérielle. En s’appuyant sur les principes fondamentaux des racines de 

confiance matérielles et des enclaves sécurisées, nous examinerons les possibilités 

offertes par l’intégration synergique de ces technologies au sein d'architectures hybrides.   
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État de l’art des menaces 
matérielles et firmware 

2. État de l’art des menaces matérielles et 

firmware 

2.1 Attaques sur le firmware 

Le firmware désigne un programme intégré directement dans un composant électronique 

(processeur, microcontrôleur, puce dédiée, périphérique) qui contrôle son fonctionnement 

fondamental et persiste généralement pendant toute la durée de vie du matériel. 

Contrairement aux logiciels traditionnels, il n'est pas destiné à être modifié fréquemment 

et fonctionne à l'interface directe entre matériel et logiciel. Cette section présente les 

principales menaces ciblant les couches basses des systèmes informatique, qui peuvent 

être classé en fonction des cibles qu’elles vissent. 

Dans le contexte spécifique du démarrage système que nous analysons ici, le firmware 

UEFI/BIOS constitue la première séquence de code exécutée lors de l'initialisation d'un 

ordinateur. 

2.1.1 Attaques sur l'UEFI/BIOS 

L'UEFI et le BIOS constituent l'interface fondamentale entre le matériel informatique et le 

système d'exploitation. Bien que l'UEFI soit souvent présenté comme le successeur du 

BIOS, il est important de noter que l'UEFI moderne intègre généralement un mode de 

compatibilité (mode legacy) permettant d'émuler le fonctionnement d'un BIOS traditionnel 

pour assurer la rétrocompatibilité avec les systèmes d'exploitation plus anciens. Leurs 

rôles dans l’initialisation du matériel et le transfert du contrôle au noyau OS en fait des 

composants critique dans la chaîne de confiance du système. 

Le BIOS (Basic Input/Output System), développé au début des années 1980, reposait sur 

une architecture limitée en mode réel 16 bits. Le mode réel 16 bits, dans lequel opérait 

initialement le BIOS, offrait un accès direct à la mémoire et aux périphériques. La 

limitation à 1 Mo d'espace adressable n'était pas intrinsèque au BIOS lui-même, mais 

résultait de l'architecture des premiers processeurs x86 et des contraintes de 

rétrocompatibilité maintenues au fil des évolutions. En réalité, même en environnement 

BIOS, le processeur pouvait basculer en mode ou en mode long (à partir des architectures 
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x86-64), permettant l'accès à davantage de mémoire et l'activation de mécanismes de 

protection. Cependant, la structure unifiée et rigide du BIOS traditionnel limitait 

effectivement sa modularité comparée à l'UEFI.  

Le démarrage BIOS, commence par un Power-On Reset (POR) puis un POST (Power-

On Self-Test) qui vérifie et initialise le processeur, la RAM et les périphériques (contrôleurs 

de clavier, affichage, …). 

Le processus POST comprend plusieurs étapes techniques : 

• Vérification : Test diagnostique des composants critiques (CPU, mémoire, 

contrôleurs), détection d'erreurs matérielles via des routines de test 

standardisées, et validation de l'intégrité des ressources système (sommes de 

contrôle). 

• Initialisation : Configuration des registres CPU aux valeurs par défaut, 

établissement des tables d'interruption, configuration initiale des contrôleurs 

(chipset, DMA, PIC), et amorçage des sous-systèmes mémoire avec leurs 

paramètres fondamentaux. 

Ce processus établit l'environnement de base nécessaire au chargement et à l'exécution 

des composants logiciels de plus haut niveau. 

Le BIOS configure ensuite le matériel, construit sa table de périphériques et expose des 

services via des interruptions. Il recherche enfin le Master Boot Record sur le premier 

périphérique de démarrage configuré, charge ce secteur en mémoire et lui transfère 

l’exécution. 

À partir de 2005, le standard UEFI (Unified Extensible Firmware Interface) a introduit une 

refonte complète du micrologiciel d’amorçage, structurée autour d’une architecture 

modulaire et avec l’ajout de mécanismes de sécurité : 

• Un environnement d'exécution en mode protégé (32 bits) ou long (64 bits), 

permettant l'accès à toute la mémoire, ainsi que de la protection mémoire 

• Une architecture modulaire basée sur des pilotes et applications indépendants 

• Une partition système dédiée (ESP - EFI System Partition) pour stocker les 

chargeurs d’amorçage, garantissant une séparation entre firmware et système 

d’exploitation 

• Prise en charge native de protocoles réseau 

• Des mécanismes de sécurité comme le Secure Boot 

Le processus de démarrage UEFI suit plusieurs phases séquentielles distinctes : 

1. SEC (Security) : Phase initiale vérification de l'authenticité du firmware 

2. PEI (Pre-EFI Initialization) : Initialisation minimale du matériel 

3. DXE (Driver Execution Environment) : Chargement des pilotes principaux 

4. BDS (Boot Device Selection) : Sélection du périphérique de démarrage 

5. TSL (Transient System Load) : Chargement du système d'exploitation 

Ces nouvelles caractéristiques architecturales, tout en apportant des améliorations 

fonctionnelles significatives, modifient indirectement la surface d'attaque. La Figure 1 
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illustre le flux du processus de démarrage et les points d'intervention potentiels pour les 

attaquants. 

 

Figure 1 - Flux du processus de démarrage système et cibles potentielles d'attaques (source : 
Rootkits and Bootkits – p58) 

Ainsi, cette modernisation a paradoxalement introduit de nouveaux vecteurs d'attaque, 

qui peuvent être catégorisé selon plusieurs approches. 

La modification directe de la mémoire flash SPI (Serial Peripheral Interface) constitue 

l'approche la plus fondamentale pour compromettre le firmware. La puce flash SPI, 

généralement soudée directement sur la carte mère à proximité du chipset, stocke 

l'intégralité du code UEFI/BIOS et constitue donc une cible privilégiée. Cette puce SPI 

contient généralement 8-16 Mo de mémoire flash organisée en régions distinctes 

(descripteur, ME, BIOS) avec différents niveaux de protection.  

L'attaquant doit [Xeno] : 

1. Élever ses privilèges pour obtenir un accès kernel/ring-0  

2. Désactiver le bit BIOSWE (BIOS Write Enable) dans le registre BIOS_CNTL  

3. Neutraliser la protection BLE (BIOS Lock Enable)  

4. Manipuler les registres Protected Range (PR0-PR4) pour autoriser l'écriture  

5. Utiliser des opérations d'E/S directes pour écrire le code malveillant  

Comme on peut le voir sur le chemin d’attaque, des protections sont implémentées par 

les fabricants, que l'attaquant doit franchir successivement [Xeno] : 

• Le verrouillage logiciel du BIOS via son interface de configuration 

• Les bits de protection du registre BIOS_CNTL, contrôlés par le chipset, qui 

empêchent les écritures non autorisées sur la puce flash 

• Les mécanismes de protection en écriture du SPI lui-même, notamment le 

registre de statut FLOCKDN (Flash Configuration Lock-Down) qui, une fois 

activé, bloque toute modification des registres de configuration jusqu'au prochain 

redémarrage matériel 

• La restriction d'accès aux plages d'adresses SPI via les registres Protected 

Range (PR0-PR4) qui définissent des régions en lecture seule 
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L'UEFI, contrairement au BIOS, adopte une conception modulaire où différents 

composants fonctionnels sont implémentés sous forme de pilotes et modules distincts. 

Cette architecture s'apparente à un mini-système d'exploitation temps réel, avec ses 

propres protocoles de communication inter-modules, ses services système et son modèle 

de pilotes extensible. Alors que le BIOS traditionnel se présente comme un unique bloc 

de code enchaînant toutes ses instructions de manière strictement linéaire, l'UEFI opère 

plus comme un environnement d'exécution complet, capable de charger dynamiquement 

des modules, d'exposer des interfaces de programmation (API) standardisées, et de 

maintenir un état cohérent entre ses différents composants. 

Cette modularité, bien qu'avantageuse pour la maintenance et l'évolutivité, élargit la 

surface d'attaque en multipliant les points d'intervention potentiels. Les attaquants 

peuvent cibler des modules spécifiques, particulièrement ceux exécutés en phase DXE, 

qui offrent un contexte d'exécution privilégié et constituent un point d'entrée vers les 

couches inférieures du système. 

Une troisième catégorie d'attaques cible spécifiquement plus largement la manipulation 

de l’ensemble des variables d’environnement de l’UEFI. Ces variables, stockées dans 

une mémoire non volatile (NVRAM) accessible au firmware, configurent divers aspects 

du comportement du système durant et après la séquence d'amorçage. Leur modification 

peut altérer fondamentalement la trajectoire d'exécution du système sans nécessiter la 

modification directe du code firmware, en modifiant par exemple les variables contrôlant 

l'ordre de démarrage ou en désactivant sélectivement des mécanismes de sécurité. 

Le cas LoJax, documenté par ESET en 2018 [ESET 2018], représente la première 

documentation publique d'un rootkit UEFI déployé dans des opérations offensives réelles. 

Cette opération, attribuée au groupe APT28 (également connu sous les noms Fancy Bear 

ou Sednit), illustre parfaitement le commencement des attaques ciblant le firmware UEFI. 

L'attaque exploitait une fonctionnalité présente dans l’UEFI : LoJack, un logiciel antivol 

préinstallé par de nombreux fabricants d’ordinateur portable.  

Le processus d'infection se déroulait de cette manière : 

1. Déploiement initial via des documents malveillants (typiquement des fichiers Word 

avec macros malveillantes) ciblant le système d'exploitation Windows de la victime, 

permettant l'installation un logiciel malveillant initial avec des privilèges utilisateur 

standard, servant de point d'entrée pour les étapes suivantes de l'attaque 

2. Élévation des privilèges via l'exploitation de vulnérabilités système (comme CVE-

2018-8120) pour obtenir des droits SYSTEM nécessaires aux opérations de bas 

niveau 

3. Utilisation d'un pilote signé légitime mais détourné, nommé « RwDrv.sys » (issu de 

l'outil RWEverything), pour accéder directement aux registres matériels et à la 

mémoire SPI  

4. Contournement des protections en écriture du firmware en manipulant les registres 

de contrôle du SPI, notamment en désactivant le bit BIOSWE (BIOS Write Enable) et 

en neutralisant la protection BIOS Lock Enable (BLE)  
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5. Installation d'un pilote UEFI malveillant directement dans la mémoire flash SPI, en 

ciblant spécifiquement la phase DXE (Driver Execution Environment) de l'UEFI pour 

garantir son chargement à chaque démarrage  

6. Configuration d'un mécanisme garantissant le chargement d'un agent malveillant lors 

du démarrage du système d'exploitation via l'ajout d'entrées dans les variables UEFI 

persistantes 

La persistance de cet implant s'explique par sa localisation dans la mémoire flash SPI 

physique, distincte et indépendante des supports de stockage de masse (disques durs, 

SSD) où réside le système d'exploitation. Contrairement aux malwares traditionnels 

stockés sur le disque système, un rootkit UEFI comme LoJax réside dans une puce 

dédiée sur la carte mère elle-même, expliquant pourquoi même le remplacement du 

disque dur ne permet pas d'éliminer l'infection. Seule une reprogrammation complète de 

la mémoire flash SPI (reflashage) peut éradiquer ce type d'implant. 

2.1.2 Bootkits 

Les bootkits représentent une classe de logiciels malveillants qui infectent les premières 

phases du processus de démarrage système, avant même que le système d'exploitation 

ne soit complètement chargé. Comme l'explique Matrosov, ces attaques ont connu une 

évolution significative passant des premiers virus de secteur d'amorçage (Boot Sector 

Infectors - BSI) aux attaques ciblant aujourd’hui les environnements UEFI. [Matrosov 

2019] 

Les origines de ces attaques remontent au développement des systèmes informatiques 

pré-IBM PC. Le programme Creeper (1971), considéré comme le premier logiciel 

autoréplicatif opérant en mode noyau, est souvent cité comme l'ancêtre des bootkits 

modernes. Les premières générations, telles que le PoC eEye BootRoot, présenté au 

Black Hat en 2005, se concentraient sur la compromission du Master Boot Record (MBR), 

exploitant sa position centrale dans l'architecture x86 pour persister hors de portée des 

mécanismes de détection du système d'exploitation.  

Les bootkits ont connu une évolution parallèlement à l'architecture de démarrage des 

systèmes. Les bootkits MBR, première génération, modifient les 512 premiers octets du 

disque et détournent le flux de contrôle vers un code malveillant stocké dans des secteurs 

cachés. Les bootkits VBR (Volume Boot Record) constituent la deuxième génération, 

particulièrement efficaces contre les systèmes multi-volumes en ciblant le secteur 

d'amorçage de chaque partition. Avec l'avènement de l'UEFI, les bootkits comme 

ESPecter manipulent désormais la partition système EFI (ESP) en remplaçant ou en 

interceptant le bootloader légitime. La dernière génération, représentée par les bootkits 

anti-Secure Boot, exploite des vulnérabilités spécifiques comme CVE-2022-21894 pour 

contourner les vérifications cryptographiques de signature, fondement même de la 

protection Secure Boot. 

Ces stratégies d’attaques peuvent être classifiées en quatre groupes distincts : 

• Instrumentalisation des mécanismes légitimes : utilisation des fonctionnalités 

intégrées au système d’exploitation (ex. désactivation temporaire de la 
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vérification de signature via des commandes spécifiques), souvent en exploitant 

des vulnérabilités dans les outils de diagnostic ou de test.  

• Exploitation de failles système : ciblage de vulnérabilités critiques dans le noyau 

ou dans des pilotes signés, permettant l'exécution arbitraire de code non 

authentifié.  

• Attaques sur le chargeur d'amorçage : modification du bootloader pour modifier 

le noyau et désactiver les vérifications de sécurité avant leur initialisation. 

• Infection du firmware  

 

Figure 2 - Démarrage UEFI standard de Windows vs séquence de démarrage modifiée par 
ESPecter (https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-

windows-devices-since-2012/) 

En 2023, le bootkit BlackLotus est apparu comme le premier bootkit UEFI capable de 

contourner la protection Secure Boot sur des systèmes Windows entièrement à jour, 

exploitant une vulnérabilité connue (CVE-2022-21894) pour s'installer. BlackLotus 

fonctionne en exploitant une vulnérabilité dans le processus de démarrage Windows pour 

charger des fichiers DLLs et EXEs non signés malgré Secure Boot. Il utilise une technique 

de "bootkit remapping" qui intercepte les appels systèmes au niveau du bootloader avant 

que les mécanismes de protection de l'OS ne soient actifs. 

Plus récemment, en 2024, la découverte de Bootkitty, le premier bootkit UEFI ciblant 

spécifiquement les systèmes Linux, marquant ainsi l'extension de cette menace au-delà 

de l'écosystème Windows. 

https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/
https://www.bleepingcomputer.com/news/security/new-uefi-bootkit-used-to-backdoor-windows-devices-since-2012/
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2.2 Attaques sur les composants matériels 

Les composants matériels des systèmes informatiques constituent un vecteur d'attaque 

fondamental pour les acteurs malveillants cherchant à compromettre la sécurité des 

systèmes. Contrairement aux vulnérabilités purement logicielles qui peuvent être 

corrigées par des mises à jour de firmware ou de système d'exploitation, les failles 

fondamentales dans l'architecture matérielle elle-même (comme les défauts de 

conception des circuits intégrés) demeurent généralement exploitables pendant toute la 

durée de vie du composant. Ces vulnérabilités, telles que Spectre, Meltdown ou 

Rowhammer, ne peuvent être véritablement éliminées que par une refonte du silicium et 

un remplacement physique des composants affectés. Les correctifs logiciels déployés 

pour ces problèmes architecturaux offrent généralement des atténuations qui réduisent 

l'exploitabilité mais entraînent souvent des compromis significatifs en termes de 

performance et ne suppriment pas la vulnérabilité.  

2.2.1 Attaque sur la mémoire 

Les attaques ciblant les sous-systèmes mémoire exploitent les caractéristiques 

physiques et architecturales des différents types de mémoire pour compromettre la 

confidentialité, l'intégrité ou la disponibilité des données. Ces attaques peuvent être 

classifiées en deux catégories principales : les attaques par perturbation physique et les 

attaques spéculatives. 

L'attaque Rowhammer, documentée par [Kim 2014], constitue l'exemple emblématique 

des attaques par perturbation physique. Cette technique exploite une vulnérabilité 

fondamentale des mémoires DRAM (Dynamic Random Access Memory). L'attaquant 

identifie d'abord des paires de lignes mémoire physiquement adjacentes, appelées 

"aggressor rows". Il accède ensuite répétitivement et alternativement à ces lignes, 

souvent plus de 100 000 fois par seconde, créant des perturbations électriques par 

interférence. Ces perturbations déchargent prématurément les condensateurs des 

cellules de la ligne victime située entre les deux lignes agresseurs. Les bits basculent 

lorsque la charge des condensateurs tombe sous le seuil de détection, modifiant ainsi les 

données stockées, tout cela sans avoir accès à ces cellules. L'impact peut être 

dévastateur : modification des tables de pages mémoire, corruption des structures de 

contrôle du noyau ou altération des bits de privilège dans les descripteurs de sécurité. 

Face à cette menace, les fabricants de puces mémoire ont introduit des mécanismes 

d'atténuation, notamment le Target Row Refresh (TRR), conçu pour détecter et prévenir 

les modèles d'accès caractéristiques d'une attaque Rowhammer. Cependant, l'évolution 

de ces contre-mesures a été suivie par le développement de techniques d'attaque plus 

sophistiquées, comme TRRespass, Frigo a démontré la capacité à contourner ces 

protections en employant des modèles d'accès plus complexes et distribués, établissant 

que les implémentations de TRR étaient vulnérables à des « many-sided hammering 

patterns » (schémas d'accès multidirectionnels qui ciblent simultanément plusieurs lignes 

de mémoire adjacentes [Frigo 2020]. Jattke a affiné cette approche en développant un 

algorithme capable de découvrir automatiquement des modèles d'accès mémoire 
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efficaces pour déclencher des bit flips, contournant ainsi pratiquement toutes les 

implémentations TRR existantes [Jattke 2022].  

Les attaques spéculatives exploitent les optimisations architecturales des processeurs 

modernes pour extraire des informations sensibles. 

Meltdown et Spectre ont révélé en 2018 et 2019 comment l'exécution spéculative et le 

réordonnancement des instructions pouvaient être exploités pour contourner les 

frontières de sécurité et accéder à des données privilégiées. Ces attaques exploitent les 

mécanismes d'optimisation des processeurs en ciblant l'exécution spéculative, c’est 

quand le processeur exécute par anticipation des instructions qui pourraient être 

nécessaires (par ex : réordonnancement des instructions). Meltdown exploite 

spécifiquement le fait que la vérification des privilèges est effectuée après l'exécution 

spéculative des instructions. Cette fenêtre temporelle, bien que minuscule (quelques 

nanosecondes), suffit pour créer des effets secondaires mesurables sur le cache, 

notamment des variations de temps d'accès. Ces variations permettent l'extraction 

d'informations sensibles à travers un canal auxiliaire basé sur les timings d'accès au 

cache, contournant ainsi les protections d'isolation mémoire les plus fondamentales du 

système. [Meltdown 2018] [Spectre 2019] 

En 2024, l'attaque micro-architecturale Indirector a affecté les processeurs Intel de 13ᵉ et 

14ᵉ générations, révélant comment des entiers spéculatifs pouvaient être exploités pour 

extraire des secrets à travers le cache [Bitdefender 2024]. 

2.2.2 Attaques par injection de fautes 

L’injection de fautes consiste à perturber, de manière contrôlée, la tension, l’horloge ou 

l’environnement physique du composant pour forcer des dérives de calcul. 

La manipulation de la tension d'alimentation représente une première approche, où 

l'introduction de variations rapides ou de « glitches » peut perturber le fonctionnement 

normal des circuits, induisant des erreurs de calcul ce qui peut aboutir à des 

contournements de vérification de sécurité. Cette technique exploite la sensibilité des 

semi-conducteurs aux fluctuations de tension, particulièrement durant les opérations 

critiques comme l'exécution d'algorithmes cryptographiques ou de vérifications 

d'authentification. 

Un exemple particulièrement significatif est la technique VGlitch documentée par 

Jerinsunny [Jerinsunny 2024], démontrant la vulnérabilité des microcontrôleurs STM32 

aux attaques par tension. Cette recherche a révélé qu'en appliquant des impulsions de 

tension précis et synchronisées, il était possible de contourner les mécanismes de 

protection de la mémoire (PMP) et d'exécuter du code non autorisé, compromettant ainsi 

l'intégrité du système. Ces perturbations provoquent des erreurs dans l'exécution des 

instructions, comme la transformation d'une instruction de branchement conditionnel 

(BEQ - Branch if EQual, qui n'exécute le saut que si la condition d'égalité est remplie) en 

branchement inconditionnel (comme JMP - Jump, qui exécute toujours le saut sans 

vérifier aucune condition), ce qui permet de sauter des vérifications cruciales. Pour 

réaliser cette attaque, un générateur d'impulsions programmable et une sonde de tension 
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haute précision sont utilisés pour injecter des transitoires de tension de quelques 

nanosecondes à des moments précis du cycle d'horloge. La précision temporelle et 

l'amplitude de ces glitches sont calibrées pour affecter spécifiquement certaines portes 

logiques sans déclencher les détecteurs de sous-tension ou provoquer une réinitialisation 

complète du système. 

Les perturbations électromagnétiques constituent une seconde approche, où l'application 

ciblée de champs électromagnétiques localisés peut induire des courants parasites dans 

les circuits, perturbant ainsi leur fonctionnement normal. Cette méthode présente 

l'avantage significatif de pouvoir être implémentée sans contact physique direct avec le 

composant ciblé, augmentant ainsi sa discrétion et réduisant les traces forensiques. La 

technique EMFI (Electromagnetic Fault Injection) a évolué en conséquence, avec le 

développement d'injecteurs de fautes électromagnétiques de haute précision capables 

de cibler des zones spécifiques d'un circuit intégré. Les courants induits peuvent modifier 

l'état des transistors pendant quelques nanosecondes, suffisamment pour transformer un 

« 0 » en « 1 » dans un registre critique ou inverser une condition d'authentification.  Une 

étude a démontré l’efficacité de l’EMFI contre des implémentations matérielles 

d’algorithmes cryptographiques : Dehbaoui a montré qu’une impulsion EMFI pouvait 

provoquer des fautes exploitables par analyse différentielle pour extraire la clé d’un AES. 

[Dehbaoui 2012] 

Les attaques par injection de fautes peuvent avoir différents effets, tel que le « saut 

instruction », c’est-à-dire qu’on va forcer le processeur à sauter des instructions qu’il 

devait normalement exécuter, ce qui provoquera une possible corruption des données ou 

alors de changer le flux d’exécution pour le détourner vers un code malveillant. 

2.2.3 Attaques sur les périphérique et interfaces 

Les périphériques et interfaces matérielles constituent des vecteurs d'attaque dans 

l'architecture système, exploitant les privilèges élevés accordés à certaines interfaces 

permettant de contourner les mécanismes de protection du système d'exploitation car 

opérant souvent à un niveau de privilège supérieur aux défenses logicielles. 

Dans les systèmes x86, l'interface SPI est utilisée pour stocker le firmware UEFI/BIOS. 

Comme nous l’avons vu précédemment, celles-ci peuvent être utilisé pour l’installation de 

bootkits persistants et ainsi compromettre le système au plus bas niveau. 

Les attaques DMA (Direct Memory Access), exploitant les interfaces offrant un accès 

direct à la mémoire physique (comme Thunderbolt, PCIe ou FireWire). Ces interfaces 

sont conçues pour optimiser les performances en permettant aux périphériques de 

communiquer directement avec la mémoire système sans intervention du processeur. Un 

périphérique peut théoriquement utiliser ces capacités DMA pour lire ou écrire 

arbitrairement dans la mémoire système, contournant ainsi les mécanismes de protection 

implémentés au niveau du système d'exploitation.  

Des attaques comme Thunderspy ont démontré comment les interfaces Thunderbolt 

pouvaient être exploitées pour contourner complètement les protections du système 

d'exploitation et accéder aux données chiffrées, même sur un système verrouillé ou en 
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veille. Comme il est conclu dans l’article, « par un accès physique de seulement cinq 

minutes au dispositif, un attaquant peut extraire les données de périphériques Windows 

ou Linux équipés de ports Thunderbolt » [Thunderbolt 2020]. L'interface Thunderbolt offre 

un accès DMA avec une bande passante de 40 Gbps, permettant théoriquement aux 

périphériques connectés de lire et d'écrire directement dans la mémoire système. Bien 

que les contrôleurs IOMMU (Input–output memory management unit) (ex : Intel VT-

d/AMD-Vi) soient censés restreindre ces accès DMA, l'attaque Thunderspy contourne ces 

protections en reprogrammant le firmware du contrôleur Thunderbolt. Cette 

reprogrammation s'effectue par extraction et modification du firmware, désactivant les 

restrictions de sécurité au niveau matériel. L'attaque exploite également les fenêtres de 

vulnérabilité qui apparaissent pendant la phase d'initialisation du système, avant que 

toutes les protections ne soient actives. Une fois ces barrières contournées, l'attaquant 

peut lire et écrire directement dans la mémoire système, contournant toutes les 

protections logicielles du système d'exploitation, y compris le chiffrement de disque, 

puisque les clés déchiffrées résident en mémoire pendant l'utilisation. 

L'exploitation des microcontrôleurs périphériques constitue un second vecteur. Les 

périphériques (cartes graphiques, carte réseau, disques SSD, …) intègrent leurs propres 

processeurs exécutant un firmware dédié, opérant très souvent avec des privilèges 

élevés et un accès direct aux ressources système. Les contrôleurs BMC (Baseboard 

Management Controller) présents dans les serveurs d'entreprise illustrent 

particulièrement cette menace. Le BMC est un microcontrôleur spécialisé intégré à la 

carte mère des serveurs, qui fonctionne indépendamment du système d'exploitation 

principal et du processeur hôte, il permet aux administrateurs de gérer à distance 

l'ensemble des fonctions du serveur. En 2023, Eclypsium a révélé deux vulnérabilités 

critiques (CVE-2023-34329 et CVE-2023-34330) dans le firmware BMC MegaRAC, utilisé 

par de nombreux fournisseurs (HP, Dell, …), ces vulnérabilités permettaient l'exécution 

de code arbitraire avec des privilèges root matériel, sans authentification préalable. 

[Eclypsium 2023] 

Les attaques ciblant les bus de communication système, comme I2C, SPI ou JTAG, 

constituent un autre vecteur. Insuffisamment protégées lors de la production matérielle, 

ces interfaces, initialement conçues pour le débogage, la configuration ou la 

programmation des composants matériels, peuvent être exploitées pour accéder à des 

fonctionnalités privilégiées. Accessibles via des points de test sur le circuit imprimé, elles 

offrent un accès direct à la mémoire et aux registres processeur permettant : 

• La lecture et l’écriture du firmware en clair 

• Le contournement de toute authentification logicielle 

• L’injection de fautes ciblées (glitching) pour sauter une étape de vérification. 

Après avoir abordé les attaques ciblant directement les composants matériels, il est 

essentiel d'examiner une autre catégorie d'attaques qui, bien que ne nécessitant pas un 

accès physique direct au matériel, exploitent néanmoins les caractéristiques physiques 

ou temporelles des composants pour compromettre leur sécurité : les attaques par 

canaux auxiliaires. 
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2.3 Attaques par canaux auxiliaires  

Les attaques par canaux auxiliaires exploitent des fuites physiques ou temporelles émises 

par un dispositif lors de ses opérations cryptographiques afin de récupérer des clés ou 

des données sensibles. Plutôt que de s’appuyer sur une vulnérabilité logique du firmware 

ou du système d’exploitation, ces attaques mesurent et analysent des caractéristiques 

telles que le temps d’exécution, la consommation électrique ou encore les émissions 

électromagnétiques. Cette menace, peut être menées à distance (via des sondes) ou 

localement. 

Les attaques par canaux auxiliaires peuvent être classifiées selon plusieurs dimensions : 

le canal exploité, la méthode d'analyse, et la proximité requise avec le dispositif cible. 

L’attaque basées sur la consommation d’énergie est basée sur deux principales 

techniques 

1. SPA (Simple Power Analysis) : cette technique examine directement les variations de 

consommation électrique pendant l'exécution d'opérations cryptographiques pour 

identifier des motifs correspondant à des opérations spécifiques. Par exemple, dans 

une implémentation naïve de RSA, la différence de consommation entre une 

opération de multiplication et une opération de carré peut révéler directement les bits 

de la clé privée. La SPA nécessite généralement peu d’échantillons mais requiert une 

connaissance approfondie de l'algorithme ciblé. 

2. DPA (Differential Power Analysis) représente une approche plus sophistiquée que la 

SPA. Cette technique exploite des méthodes statistiques appliquées à de multiples 

traces de consommation électrique pour extraire les informations relatives aux clés 

cryptographiques. Sa robustesse lui permet de rester efficace même en présence 

d'un bruit de mesure significatif ou lorsque des contre-mesures élémentaires ont été 

implémentées dans le dispositif ciblé. 

Au-delà de la consommation électrique, les circuits intégrés émettent des ondes 

électromagnétiques proportionnelles à l'activité des transistors. En plaçant une antenne 

ou une sonde près du composant, l'attaquant enregistre ces émissions et, via des 

traitements spectrogrammes, identifie des patterns corrélés aux opérations 

cryptographiques. Les attaques SEMA (Simple Electromagnetic Analysis) et DEMA 

(Differential Electromagnetic Analysis) suivent des principes similaires à leurs 

homologues basées sur la consommation d'énergie, mais présentent un avantage 

significatif, elles peuvent être réalisées à distance, sans contact direct avec le circuit. 

Les attaques temporelles consistent à mesurer la durée d’exécution d’opérations 

cryptographiques et à en déduire des informations sur la clé secrète. Chaque instruction 

ou branche conditionnelle peut présenter un temps d’exécution variable selon les bits 

traités, en accumulant suffisamment de mesures, un attaquant peut reconstituer 

l’ensemble de la clé [Kocher 1996]. Ces attaques restent d’actualité, notamment contre 

les implémentations TLS sur serveurs cloud, avec le “cache timing” [Bitdefender 2024]. 

D'autres variantes comme les attaques par cache (Cache-timing, Flush+Reload, 

Prime+Probe) exploitent le partage des caches entre processus pour inférer des 

informations sensibles à partir des schémas d'accès mémoire. 
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D'autres canaux physiques peuvent également être exploités : 

• Attaques acoustiques : Analyser le son émis par un clavier pour déterminer les 

touches pressées, ou les variations sonores subtiles de certains composants 

électroniques pendant des opérations cryptographiques. 

• Analyse thermique : Exploiter les variations de température des composants pour 

déduire des informations sur les calculs effectués. 

2.4 Menaces systèmes embarqués et IOT 

Les systèmes embarqués ainsi que les objets de l’internet des objets (IoT), qu’ils 

motorisent un véhicule, un dispositif médical ou un capteur industriel, partagent trois 

contraintes importantes : des ressources matérielles limitées (CPU, mémoire, énergie), 

une connectivité quasi permanente et des cycles de vie variables : relativement courts (3-

5 ans) pour les dispositifs IoT grand public, mais potentiellement très longs (10-15 ans) 

pour certains systèmes embarqués industriels ou critiques. Dans les deux cas, ces cycles 

de vie sont souvent caractérisés par des mises à jour irrégulières qui créent des fenêtres 

de vulnérabilité prolongées. Avec une projection de plus de 75 milliards d’objets 

connectes selon le NIST, ces objets deviennent un acteur majeur au niveau de la 

sécurisation : 67,3 % des firmwares IoT exploitent aujourd’hui encore des bibliothèques 

obsolètes, exposant ainsi de nombreuses applications à des vulnérabilités connues 

[AutoFirm 2024] 

2.4.1 Chaîne d’approvisionnement : du silicium au firmware 

La production d'un objet connecté mobilise souvent un écosystème mondial de sous-

traitants, rendant particulièrement complexe la vérification de l'authenticité et de l'intégrité 

des composants (SoC, microcontrôleurs, modules radio). Les rapports d'ENISA signalent 

une augmentation préoccupante de la contrefaçon matérielle et de l'insertion de portes 

dérobées dès l'usine sous forme de blocs IP malveillants [ENISA 2023]. Avec une 

possibilité d'implants matériels (« hardware implants ») dû un contexte géopolitique et 

d’espionnage, ces dispositifs microscopiques, détectables uniquement par radiographie 

ou microscope électronique, peuvent être insérés lors de la fabrication et de la 

distribution. 

Comme évoqué § 2.2.3, les ports JTAG demeurent fréquemment actifs sur le produit final, 

faute de locking définitif ou d’e-fuses dû à des contrainte de réduction des coûts. Ils 

deviennent donc la première cible lors d’une attaque hardware, avec le faible coût des 

sondes et des injecteurs de glitch, cela rend cette menace accessible à un très large 

éventail d’attaquants. Une étude en 2018 par Vishwakarma recense de nombreux cas 

d’exploitation réussie de JTAG sur des dispositifs IoT grand public, notamment pour 

extraire des clés cryptographiques ou injecter du code malveillant [Vishwakarma 2018]. 

2.4.2 Vulnérabilités liées au cycle de vie et à la maintenance 

La gestion des mises à jour constitue un autre défi sécuritaire majeur pour ces systèmes. 

Si de nombreux dispositifs IoT intègrent des mécanismes de mise à jour over-the-air 
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(OTA), leur implémentation souffre souvent de failles critiques. L'absence de vérification 

cryptographique robuste expose ces systèmes à des attaques de type « firmware 

poisoning », où un attaquant peut injecter un firmware malveillant via un proxy ou un 

serveur de mise à jour compromis. 

Cette vulnérabilité est amplifiée par l’abandon des constructeurs, à partir d’un cycle, d’un 

support de ses appareils, ainsi les vulnérabilités découvertes demeurent sans correctif. 

Cette problématique est particulièrement prononcée dans les contextes industriels, où 

des systèmes embarqués critiques qui peuvent rester opérationnels pendant des 

décennies, accumulant progressivement une dette de sécurité considérable. 

2.4.3 Failles protocolaires, configuration et attaques sur les 

ressources 

Outre les vulnérabilités matérielles et de firmware, les protocoles de communication IoT 

(MQTT, CoAP, HTTP/REST, WebSocket) et les différentes APIs constituent un vecteur 

d’attaque privilégié. Par exemple, le protocole MQTT, largement déployé pour sa légèreté, 

a révélé 33 vulnérabilités critiques affectant des millions de dispositifs, parmi lesquelles 

18 jugées « critical » par Kaspersky [Mitchell 2022]. 

Dans le contexte des dispositifs IoT grand public, la fragilité sécuritaire se manifeste 

également par l’utilisation de configurations par défaut. De nombreux produits sont 

déployés avec des identifiants d'accès inchangé, des interfaces de gestion 

insuffisamment protégées, ou des services superflus activés par défaut. Les botnets Mirai 

et ses dérivés en sont des exemples frappants, ayant exploité ces vulnérabilités pour 

orchestrer des attaques distribuées massives.  

Les dispositifs modernes implémentent souvent plusieurs protocoles simultanément 

(WiFi, Bluetooth, LoRa, ZigBee), chacun présentant son propre modèle de menace. Cette 

multiplicité protocolaire crée un environnement propice aux attaques transitives, où la 

compromission d'un sous-système peut compromettre l'ensemble du dispositif. 

Les attaques par épuisement de batterie constituent une menace particulière aux 

systèmes alimentés par pile. Un attaquant peut forcer des transmissions radio répétées 

ou des calculs intensifs pour vider prématurément la batterie, une forme de déni de 

service particulièrement efficace contre les capteurs déployés dans des zones difficiles 

d'accès. 
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Figure 3 - Surface d'attaque IOT (source : https://www.researchgate.net/figure/oT-Attack-
Surface-Areas-Based-on-Miessler-2015_fig2_286440570)  

Face à l’ensemble de menaces qui ont été abordés, les approches traditionnelles de 

sécurisation s'avèrent souvent inadaptées, nécessitant l'élaboration de défense 

spécifiquement conçus pour les contraintes et vulnérabilités uniques des systèmes 

embarqués, IoT et x86. Ces architectures de protection, qui seront explorées dans le 

chapitre suivant, doivent intégrer simultanément les contraintes matérielles inhérentes à 

ces systèmes tout en établissant des fondations sécuritaires robustes adaptées à leur 

déploiement dans des environnements potentiellement hostiles. 

  

https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570
https://www.researchgate.net/figure/oT-Attack-Surface-Areas-Based-on-Miessler-2015_fig2_286440570
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Architectures de protection 
matérielle 

3. Architectures de protection matérielle 

3.1 Principes fondamentaux de défense 

Dans un contexte où les attaquent ciblant les couches basses (firmware, pilotes, 

chargeurs d’amorçage) deviennent de plus en plus sophistiquées, la conception 

d’architectures de protection matérielle s’impose comme une exigence critique. Ces 

architectures reposent sur quatre piliers fondamentaux :  

• Les racines de confiance 

• Les chaînes de confiance 

• Les mécanismes d’attestation 

• Les principes d’isolation et de cloisonnement 

Leur combinaison permet d’établir un continuum de sécurité depuis l’amorçage du 

système jusqu’aux applications de haut niveau. 

• Racine de confiance (Root of Trust) : Selon la norme ISO/IEC 11889:2015, une 

racine de confiance désigne « un ensemble de fonctions au sein d'un système de 

confiance qui sont toujours implicitement fiables et qui forment la base permettant 

d'établir la confiance dans l'ensemble du système ». Le NIST SP 800-193 précise 

qu'une RoT doit posséder trois propriétés essentielles : elle doit être 

« inaltérable » (immutable), « mesurable de manière fiable » (reliably measured) 

et « minimale » pour réduire la surface d'attaque. 

• Chaîne de confiance (Chain of Trust) : Définie par le standard GlobalPlatform 

TEE System Architecture v1.3 comme une séquence de transferts d'exécution où 

chaque étape vérifie cryptographiquement l'intégrité et l'authenticité de l'étape 

suivante avant de lui transférer le contrôle, créant ainsi une propagation transitive 

de la confiance depuis la racine initiale. 

• Mécanismes d’attestation : Ils complètent la chaîne de confiance en fournissant, 

à un tiers ou à un hyperviseur, la preuve cryptographique de l’état exact de la 

plateforme. En utilisant des valeurs aléatoires uniques (nonces) comme défis 

cryptographiques et des signatures générées par des clés d'attestation dédiées, 

ils garantissent que le système n'a pas été compromis depuis sa mesure initiale. 
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• Isolation/Cloisonnement : Le NIST IR 8320 caractérise l'isolation comme « la 

séparation des domaines d'exécution ou de stockage pour prévenir toute 

influence non autorisée entre eux », en distinguant l'isolation spatiale (séparation 

des ressources mémoire), temporelle (séparation des cycles d'exécution) et 

logique (séparation des privilèges d'accès). 

3.1.1 Racines de confiance matérielles 

La racine de confiance matérielle (Hardware Root of Trust (HRoT)) constitue le fondement 

de toute architecture de sécurité moderne. Selon les recommandations du NIST [NIST 

2018], comme dit précédemment, toute RoT doit répondre à au moins trois critères 

essentiels : immutabilité, capacité cryptographique, et résistance aux attaques physiques 

et logiques. 

L’immutabilité s’exprime par la non-modifiabilité des données sensibles après la 

fabrication, souvent assurée par des mémoires ROM (Read Only Memory). La capacité 

cryptographique inclut la génération de clés asymétriques (RSA, ECC) et le calcul de 

fonctions de hachage sécurisées (SHA-256 au moins), tandis que la résistance aux 

attaques repose sur la protection des attaques physiques ou des contre-mesures contre 

les attaques par canaux auxiliaires.    

La littérature distingue plusieurs services de RoT, notamment : 

• Root of Trust for Measurement (RTM) : initialise le processus de mesure du code 

• Root of Trust for Verification (RTV) : vérifie la validité des blobs mesurés. 

• Root of Trust for Storage (RTS) : fournit un stockage sécurisé pour les données 

sensibles. 

Ces services collaborent en chaîne pour établir une fondation de confiance dès l’allumage 

du système. 

3.1.2 Chaînes de confiance et attestation 

Le concept de chaîne de confiance constitue un fondement architectural critique dans la 

sécurité moderne des systèmes informatiques. Il repose sur un principe fondamental : 

établir une séquence ininterrompue de validations cryptographiques depuis un ancrage 

de confiance initial jusqu'aux couches applicatives. 

Cette approche s’articule autour de trois mécanismes, la mesure séquentielle, la 

validation cryptographique et le transfert du contrôle après que les précédents 

mécanismes ont réussi. C’est la procédure qui est utilisé dans Secure Boot et qui sera 

discuté plus en détail dans une prochaine partie.  

Dans la mesure séquentielle, chaque composant de la chaîne produit un hash du 

composant suivant avant de lui transférer le contrôle d'exécution, stocké dans des 

registres protégés contre les modifications. 

Deux modèles principaux d'établissement de chaîne de confiance coexistent : La Static 

Root of Trust for Measurement (SRTM) initialise la chaîne dès l'allumage du système et 

maintient une séquence continue de validations tout au long du processus de démarrage 
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et le Dynamic Root of Trust for Measurement (DRTM) qui permet d'établir une nouvelle 

racine de confiance à tout moment pendant l'exécution du système, utile dans les 

environnements dynamiques. 

L’attestation matérielle permet ensuite de fournir à un tiers (hyperviseur, gestionnaire de 

réseau) des preuves cryptographiques de l’état du système, avec l’utilisation d’une clé 

d'attestation (Attestation Identity Key), consolidant la confiance tout au long du cycle 

3.1.3 Isolation et cloisonnement 

Le principe d'isolation vise à compartimenter les ressources du système afin de contenir 

les éventuelles compromissions et limiter leur propagation 

L'isolation peut être mise en œuvre à différents niveaux : 

• Isolation physique : séparation matérielle complète des composants critiques 

(ex : Secure Element). 

• Isolation par virtualisation : utilisation d'hyperviseurs pour séparer les 

environnements d'exécution. 

• Isolation par contrôle d'accès mémoire : restriction des accès à certaines zones 

mémoire par des mécanismes matériels. 

• Isolation temporelle : séparation dans le temps des opérations critiques et non 

critiques. 

Les architectures ARM TrustZone illustrent cette isolation via deux mondes distincts, 

« Secure World » et « Normal World », avec une barrière matérielle empêchant tout accès 

non autorisé (sans une authentification préalable) du monde normal au monde sécurisé 

 

Figure 4 - La vision de ARM sur l’isolation et le cloisonnement (source : ARM) 
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Le cloisonnement des privilèges s'appuie sur le principe de moindre privilège (Principle 

of Least Privilege), selon lequel chaque composant ne doit disposer que des droits 

strictement nécessaires à son fonctionnement, réduisant ainsi la surface d’attaque. 

3.2 Technologies de sécurité matérielle pour systèmes 

x86/x64 

Les architectures de protection matérielle pour plateformes x86/x64 ont considérablement 

évolué ces dernières années. Cette section analyse les mécanismes fondamentaux 

déployés dans les systèmes modernes pour garantir un niveau de sécurité adéquat 

jusqu’au démarrage du système d’exploitation. 

3.2.1 Secure Boot et UEFI protégé 

Le Secure Boot constitue un mécanisme de protection essentiel établissant une chaîne 

de confiance cryptographique durant la séquence d'amorçage. Son implémentation 

repose sur une validation systématique des signatures de chaque composant depuis le 

firmware initial jusqu'au noyau du système d'exploitation. 

 

Figure 4 - Processus du Secure Boot (source : https://ealtili.medium.com/secure-boot-process-
8b5fa87903f4)  

L'architecture de validation s'articule autour d'une hiérarchie de clés : 

• Platform Key (PK) : Racine de confiance contrôlant l'accès aux variables UEFI 

protégées 

• Key Exchange Keys (KEK) : Clés intermédiaires permettant la signature des 

certificats d'autorisation 

• Bases de données db/dbx : Contenant respectivement les signatures autorisées 

et révoquées 

https://ealtili.medium.com/secure-boot-process-8b5fa87903f4
https://ealtili.medium.com/secure-boot-process-8b5fa87903f4
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Cette hiérarchie de confiance implique plusieurs acteurs exerçant des responsabilités, les 

fabricants de matériel (OEMs), établissent initialement la Platform Key (PK) lors de la 

fabrication du système et l'inscrivent dans la mémoire non volatile. Cette clé représente 

l'autorité ultime sur la configuration de sécurité UEFI. Les OEMs préconfigurent 

également les KEKs initiales et les entrées des bases db/dbx. Les OS peuvent aussi 

fournisent leurs KEKs 

Les processeurs modernes intègrent des racines de confiance matérielles 

complémentaires au Secure Boot UEFI. Intel Boot Guard, introduit avec les processeurs 

de 4ème génération, implémente une racine de confiance matérielle vérifiant l'authenticité 

du premier code exécuté lors du démarrage avec deux modes opérationnels distincts : le 

mode Verified Boot, qui vérifie l'authenticité du firmware sans bloquer nécessairement 

l'exécution en cas d'échec, et le mode Measured Boot, qui calcule une empreinte 

cryptographique du firmware et la stocke dans le TPM pour permettre une attestation 

ultérieure. La clé publique de vérification est stockée dans des fusibles électroniques non 

reprogrammables, établissant un ancrage de confiance résistant à la subversion. 

Parallèlement, AMD a développé sa propre solution avec le Platform Security Processor 

(PSP), un coprocesseur de sécurité intégré qui vérifie l'intégrité du BIOS avant son 

exécution et implémente une racine de confiance matérielle pour le système. Son 

architecture repose sur un cœur ARM dédié, isolé du processeur principal, garantissant 

ainsi une séparation physique entre l'environnement d'exécution sécurisé et le reste du 

système. Le PSP implémente également des capacités de chiffrement autonomes et 

prend en charge l'implémentation du firmware TPM (fTPM). 

Ces technologies constituent une défense significative contre les attaques ciblant la 

phase du démarrage, comme le souligne l'ANSSI dans ses recommandations pour les 

plateformes x86 [ANSSI 2019]. Cependant, ces protections ont montré leurs limites avec 

la découverte de vulnérabilités critiques. La faille CVE-2024-7344, identifiée par les 

chercheurs d'ESET en janvier 2025, permet le contournement du Secure Boot. [ESET 

2024]. Cette vulnérabilité critique exploite une faiblesse dans le processus de validation 

des signatures du bootloader, permettant à un attaquant disposant de privilèges 

administratifs d'injecter du code non signé dans la chaîne de démarrage. 

Dans l'architecture ARM, il existe ce qu’on appelle Trusted Firmware (ATF), ce processus, 

similaire au fonctionnement de Secure Boot implique plusieurs étapes : BL1 (ROM) → 

BL2 (Trusted Boot Firmware) → BL3 (Runtime Firmware) → OS 

3.2.2 Trusted Platform Module : variantes et vulnérabilités 

Le TPM représente une composante fondamentale dans l'architecture de sécurité 

modernes. Spécifié par le Trusted Computing Group (TCG), le TPM 2.0 constitue 

aujourd'hui la norme dominante dans ce domaine, succédant à sa version 1.2 avec des 

améliorations en termes de fonctionnalités cryptographiques et de résistance aux 

attaques [ISO 2015]. 

Le TPM assure plusieurs fonctions primordiales dans l'architecture de sécurité globale. Il 

permet la génération et le stockage sécurisé de clés cryptographiques, offre des 
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capacités de mesure et d'attestation de l'intégrité du système via ses registres de 

configuration de plateforme (PCR), le scellement cryptographique de données, et fournit 

une source fiable de nombres aléatoires [Arthur 2015]. 

L'écosystème TPM présente plusieurs implémentations, chacune avec ses compromis 

entre sécurité, coût et intégration.  

Le dTPM constitue l'implémentation la plus traditionnelle et, théoriquement, la plus 

sécurisée. Cette forme de TPM est un composant matériel physiquement, généralement 

sous forme de puce dédiée, connecté à la carte mère via un bus LPC (Low Pin Count) ou 

SPI (Serial Peripheral Interface). Cette séparation physique confère au dTPM un niveau 

d'isolation supérieur face aux attaques logicielles. L’ANSSI recommande explicitement 

cette implémentation pour les environnements à haute sensibilité [ANSSI 2019]. 

Le fTPM représente une évolution plus récente, consistant en une implémentation 

logicielle exécutée dans un environnement privilégié du processeur. C’est ce qu’utilise 

AMD avec le Platform Security Processor et Intel avec son Platform Trust Technology 

(PTT). Cette approche présente l'avantage de réduire les coûts et la complexité de 

conception. Toutefois, le fTPM partage partiellement son environnement d'exécution avec 

d'autres composants du système, réduisant son isolation face à certaines catégories 

d'attaques. 

Ces implémentations ne sont pas exemptes de vulnérabilités, la vulnérabilité TPM-FAIL a 

démontré la possibilité d'extraire des clés privées via des attaques temporelles contre des 

TPM. Sur le fTPM d'Intel, les chercheurs ont récupéré une clé ECDSA après seulement 

1 300 observations en moins de deux minutes et sur un TPM matériel de 

STMicroelectronics cette clé a été extraite après 40 000 observations en 80 minutes. 

[TPM-FAIL 2020]   

Le vTPM constitue une implémentation entièrement logicielle, généralement déployée 

dans des environnements virtualisés pour fournir des fonctionnalités TPM aux machines 

virtuelles. Google a été le premier fournisseur majeur de cloud à offrir des TPM virtualisés 

dans le cadre de leur produit. L'hyperviseur gère généralement ces instances de vTPM 

dont le niveau de sécurité dépend fondamentalement de la robustesse de l'hyperviseur 

et de l'environnement d'exécution hôte. 

L'efficacité de ces différentes variantes de TPM face aux menaces dépend non seulement 

de leur mode d'implémentation, mais également de leur intégration cohérente dans 

l'architecture de sécurité globale du système. Les évolutions récentes dans le domaine 

des TPM tendent vers une intégration du fTPM. 

3.3 Solutions pour systèmes embarqués 

3.3.1 ARM TrustZone / RISC-V PMP 

ARM TrustZone représente la technologie de sécurité dominante dans l'écosystème des 

systèmes embarqués modernes. Introduite par ARM, en 2004, cette technologie 

implémente un concept de séparation matérielle entre deux mondes d'exécution : un 

monde sécurisé (Secure World), pour les opérations critique et un monde normal (Normal 
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World), dans lequel l’OS tournera. Initialement conçue pour les processeurs haut de 

gamme, cette technologie a été étendu sur un grand ensemble de microcontrôleurs et 

s'est imposée comme un élément clé dans la sécurisation des applications IoT sensibles, 

notamment pour le paiement mobile, l'authentification biométrique et la protection des 

clés cryptographiques. 

Cette isolation s'étend à tous les niveaux de l'architecture système. Au niveau du 

processeur, TrustZone implémente un bit d'état Non-Secure (NS) qui détermine si le CPU 

fonctionne dans le monde sécurisé (NS=0) ou non-sécurisé (NS=1). Pour la mémoire, le 

Security Attribution Unit (SAU) partitionne l'espace d'adressage, attribuant des régions 

spécifiques à chaque monde. Les périphériques sont contrôlés par le Security 

Configuration Controller (SCC) qui définit leur accessibilité depuis chaque monde. Enfin, 

les bus système propagent le bit NS à travers toutes les transactions, garantissant que la 

séparation des mondes est maintenue jusqu'aux périphériques externes. 

Une étude de 2019 sur un SoC CortexA53 (Raspberry Pi 3) montre que le basculement 

entre mondes sécurisé et non sécurisé prend ≈ 1520 µs et que les calculs réalisés dans 

le Secure World n’encaissent que < 5 % de perte de performance, seule l’écriture dans 

le secteur de stockage chiffré souffre d’un ralentissement (débit ÷ 7) [Amacher 2019]. 

L'architecture RISC-V propose une approche différente mais complémentaire avec son 

mécanisme Physical Memory Protection (PMP).  

Le mécanisme PMP définit 64 régions mémoire qui peuvent être individuellement 

configurées pour appliquer des permissions d'accès. Les caractéristiques architecturales 

du PMP sont : 

• Hiérarchie des privilèges : Machine-mode (M-mode), Supervisor-mode (S-mode) 

et User-mode (U-mode) 

o Configuration exclusive M-mode : Seul ce mode peut programmer les 

registres PMP 

• Verrouillage irrévocable : Le bit L empêche toute modification jusqu'au reset du 

matériel (même par un logiciel qui peut être en M-mode) 

• Les permissions de lecture (R), d'écriture (W) et d'exécution (X) par région 

Cette architecture de sécurité trouve une application particulièrement pertinente dans le 

contexte des environnements d'exécution de confiance (Trusted Execution Environment, 

TEE), où l'isolation totale entre composants sécurisés et non sécurisés constitue un 

impératif absolu. 

3.3.2 Secure Elements et enclaves sécurisées 

Un Secure Element (SE) représente l’approche hardware la plus robuste pour la 

protection cryptographique, généralement sous la forme d’un microprocesseur sécurisé 

dédié (forme de puce distincte ou intégrée), qui offre un environnement hautement 

sécurisé. 

L’architecture typique d'un Secure Element : 

• Protection physique : Blindage métallique, maillage actif 
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• Capteurs anti-intrusion : Détection tension, température, lumière, fréquence 

• Moteur cryptographique : Accélérateurs RSA/ECC, AES, SHA 

• Mémoire non-volatile : EEPROM/Flash sécurisée pour clés et certificats 

• Interface limitée : SPI/I2C avec authentification des commandes 

Les SE se déclinent en plusieurs formats : eSE (embedded Secure Element) soudé à la 

carte mère, eSIM, module discret SPI ou carte micro-SD sécurisée. Les SE atteignent 

typiquement Common Criteria EAL5+ ou FIPS 140-3 niveau 2, les rendant adaptés aux 

applications critiques comme paiements mobiles ou passeports électroniques. 

Les enclaves sécurisées (TEE) représentent une évolution du concept de Secure 

Element, en offrant un environnement d'exécution isolé directement intégré au sein des 

processeurs principaux. Elles créent une zone protégée tout en partageant certaines 

ressources avec le processeur hôte. Celle-ci sont utilisé par des technologies comme 

Intel SGX ou Arm Confidential Compute Architecture.  

Parmi les avantages clés des enclaves sécurisées, on trouve : 

• La protection des données en cours d'utilisation, chiffrées au sein de l'enclave 

• Isolation des algorithmes utilisées 

• La résistance aux tentatives de falsification matérielles et logicielles 

• Le support du démarrage sécurisé et des mises à jour de firmware authentifiées 

3.3.3 Synergie entre Secure Element et enclave 

L'intégration synergique des Secure Elements et des enclaves sécurisées représente une 

proposition d’architecture intéressante pour les systèmes embarqués, combinant les 

forces respectives de chaque technologie dans une approche défense en profondeur. 

Cette architecture hybride s'articule autour : 

1. Secure Element comme racine de confiance matérielle  

• Stockage des clés racines dans une mémoire EEPROM protégée 

• Authentification cryptographique de l’enclave via signatures ECDSA 

• Validation de chaque mise à jour de firmware par le SE avant chargement 

dans l’enclave (« comme un Secure Boot »). 

2. Enclave pour l’exécution isolée 

• Exécution des opérations cryptographiques sensibles (chiffrement, 

signature, génération d’aléas) dans un environnement isolé, « sans 

impact » sur l’OS hôte. 

• Protection contre les attaques par DMA grâce à l’usage d’un contrôleur 

d’accès dédié, bloquant tout accès direct à la mémoire de l’enclave. 

3. Persistance et attestation via le SE avec des scellement des clés et stockage des 

certificats 

4. Protection d'exécution continue par l'enclave 

• Surveillance active de l’intégrité du code et des données chargés dans 

l’enclave (measurement & runtime integrity checks). 
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• Mise en place de mécanismes de remédiation automatique (reset partiel, 

rollback) en cas de détection d’anomalie. 

En combinant ces deux composants, l’enclave déleste le CPU principal pour les tâches 

de sécurité en temps réel, tandis que le Secure Element assure en arrière-plan la 

persistance et l’attestation, permettant ainsi une gestion optimisée de l’énergie et une 

réduction de la complexité logicielle. 

Malgré leurs différences fondamentales, toutes ces approches partagent le même 

objectif : fournir une racine de confiance robuste, tout en tenant compte des contraintes 

spécifiques des plateformes qu'elles protègent. 

3.4 Analyse comparative des solutions 

Les architectures de protection matérielle présentées révèlent des compromis 

fondamentaux entre sécurité, performance et contraintes d'implémentation. Cette section 

propose une analyse comparative systématique des différentes approches.  

Les solutions pour plateformes x86/x64 offrent généralement le niveau de protection le 

plus élevé. Le TPM discret représente l'approche la plus robuste, avec une isolation 

matérielle complète et une forte résistance aux attaques physiques, bien que son coût 

soit significativement plus élevé. Les implémentations firmware (fTPM) d'Intel et AMD 

constituent un compromis attractif : intégrées directement dans le processeur, elles 

réduisent les coûts tout en maintenant un niveau de sécurité acceptable pour la majorité 

des cas d'usage, malgré une résistance moindre aux attaques physiques. 

Dans l'écosystème embarqué, les contraintes de ressources imposent des approches 

différentes. ARM TrustZone s'est imposée comme la solution dominante pour les 

processeurs de moyenne et haute gamme, offrant une isolation matérielle efficace avec 

un surcoût de performance minimal (moins de 5% selon [Amacher 2019]). Cette 

technologie bénéficie d'une intégration native dans l'architecture ARM, éliminant les coûts 

additionnels tout en maintenant une résistance raisonnable aux attaques. Pour les 

architectures RISC-V, le mécanisme PMP (Physical Memory Protection) propose une 

alternative libre. 

Les Secure Elements occupent une position particulière dans cet écosystème. Offrant le 

niveau de protection physique le plus élevé grâce à leur conception dédiée et leurs contre-

mesures hardware. Leur coût élevé et leur bande passante limitée par les interfaces de 

communication (SPI) restreignent cependant leur adoption généralisée.  

En synthèse, le choix de la solution « optimale » dépend étroitement du contexte 

d'application et des menaces spécifiques. Les environnements critiques justifient 

l'investissement dans des solutions matérielles dédiées (TPM discret, Secure Elements), 

tandis que les déploiements à grande échelle privilégient souvent les approches intégrées 

(fTPM, TrustZone). La tendance actuelle vers des architectures hybrides, combinant 

plusieurs mécanismes de protection, reflète la nécessité d'adapter les défenses à la 

sophistication croissante des attaques. 
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Solution Forces Faiblesses 

TPM discret (dTPM) Isolation matérielle complète 

Résistance élevée aux attaques 
logicielles 

Coût plus élevé 

Vulnérabilité aux attaques sur bus de 
communication 

Bande passante limitée 

TPM firmware (fTPM) Coût réduit 

Performance supérieure 

Intégration native 

Isolation réduite 

Dépendance à la sécurité du CPU 

Vulnérabilité aux attaques du 
processeur 

TPM virtuel (vTPM) Flexibilité maximale 

Mise à jour simplifiée 

Sécurité dépendante de l'hyperviseur 

Risques d'attaques inter-VM 

Pas de protection matérielle 

ARM TrustZone Intégration native dans SoC 

Faible impact énergétique 

Isolation matérielle légère 

Surface d'attaque au niveau du moniteur 
(logiciel gérant les transitions entre les 
mondes) 

Isolation binaire (seulement deux 
mondes) 

RISC-V PMP Architecture ouverte et flexible 

Faible surcoût en silicium 

Maturité limitée et écosystème en 
développement 

Secure Elements Protection physique maximale 

Résistance aux attaques 
matérielles 

Coût important 

Interface limitée 

Performance restreinte 

Table 1 - Tableau récapitulatif des solutions de sécurité 
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Le TPM 2.0 comme élément 
central de protection 

4. Le TPM 2.0 comme élément central de 

protection 

À la suite de l'analyse des architectures de protection matérielle présentées dans le 

chapitre précédent, cette section se concentre sur le Trusted Platform Module 2.0, qui 

s'est progressivement imposé comme la pierre angulaire des chaînes de confiance 

modernes. Déployé aussi bien dans les ordinateurs personnels que dans les 

infrastructures cloud et les systèmes embarqués, le TPM constitue aujourd'hui l'ancre 

matérielle de référence pour sécuriser les plateformes informatiques. La version 2.0, 

standardisée par le Trusted Computing Group (TCG) en 2015 et révisée en 2019, 

représente une évolution majeure par rapport à son prédécesseur. Elle introduit 

notamment un modèle cryptographique permettant l'évolution des algorithmes (dont le 

support des algorithmes quantiques), ainsi que le support natif de la cryptographie à 

courbes elliptiques et des politiques d'accès conditionnelle. Cette section examine 

successivement l'architecture interne et les fonctionnalités du TPM 2.0 (4.1), ses 

principaux cas d'usage pour la protection des systèmes (4.2), ainsi que ses limites et 

vulnérabilités connues (4.3), permettant ainsi d'évaluer son rôle effectif dans les 

architectures de sécurité. 

4.1 Architecture et fonctionnalités du TPM 2.0 

4.1.1 Composants et opérations fondamentales 

Le TPM 2.0 se présente comme un cryptoprocesseur sécurisé, conçu pour protéger les 

informations sensibles et garantir l'intégrité des plateformes. En tant que racine de 

confiance matérielle, il constitue le fondement sur lequel repose l'ensemble de la chaîne 

de sécurité d'un système. 

Au cœur du module de ce TPM 2.0 se trouve un processeur cryptographique qui prend 

en charge diverses opérations cryptographiques essentielles, la génération de nombres 

aléatoires, la création et la gestion de clés cryptographiques, ainsi que les opérations de 

chiffrement, déchiffrement et signature. Ce processeur est complété par plusieurs 
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générateurs d'algorithmes cryptographiques, parmi lesquels figurent obligatoirement 

RSA, SHA-1, SHA-256 et HMAC, auxquels s'ajoutent maintenant des algorithmes comme 

l'ECC (Elliptic Curve Cryptography) et AES [Arthur 2015]. 

 

Figure 5 - Architecture interne d'un TPM 2.0 (source : https://www.researchgate.net/figure/Main-
components-of-Trusted-Platform-Module-TPM_fig1_363027155 ) 

La mémoire non volatile du TPM constitue un élément critique de son architecture, 

permettant de stocker de manière sécurisée différents types de données persistantes : 

• Les clés d'endossement (Endorsement Keys), générées lors de la fabrication du 

TPM et uniques à chaque module 

• Les clés de stockage (Storage Root Keys), utilisées pour protéger d'autres clés 

et données sensibles 

• Les mesures d'intégrité du système enregistrées dans les registres PCR 

• Les politiques de sécurité qui définissent les conditions d'accès aux ressources 

protégées 

Les registres PCR constituent le cœur du mécanisme de mesure d'intégrité. Ces registres 

ne sont pas modifiables directement, mais uniquement à travers une opération appelée 

"extension". L'opération d'extension PCR suit la formule : PCR[i] = Hash(PCR[i] || 

data_to_extend), où || représente la concaténation. Cette propriété mathématique garantit 

qu'une fois une valeur étendue, il est cryptographiquement impossible de manipuler le 

registre pour revenir à un état précédent sans réinitialiser entièrement le TPM. 

Le TPM 2.0 dispose typiquement de 24 registres PCR (contre 16 pour le TPM 1.2), 

numérotés de 0 à 23, chacun ayant une fonction spécifique définie par la spécification 

TCG : 

• PCR 0-7 : Réservés pour les mesures BIOS/UEFI et firmware 

https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155
https://www.researchgate.net/figure/Main-components-of-Trusted-Platform-Module-TPM_fig1_363027155
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• PCR 8-15 : Attribués aux composants du système d’exploitation (boot loader, OS 

kernel, modules) 

• PCR 16 : Destiné aux tests et débogage 

• PCR 17-22 : Réservés pour le DRTM 

• PCR 23 : Support d’application, librement exploitable par l’OS ou les applications 

utilisateur 

Comme le précise la norme ISO/IEC 11889:2015 [ISO 2015], le TPM 2.0 implémente 

également une hiérarchie de clés, structurée autour de quatre domaines principaux : la 

hiérarchie d'endossement, utilisée pour les fonctions d'attestation et l'identification unique 

du TPM, la hiérarchie de plateforme, réservée aux constructeurs et aux administrateurs 

système, la hiérarchie de stockage, dédiée à la protection des données utilisateurs, et la 

hiérarchie Null, qui fournit un mécanisme pour les opérations temporaires sans 

persistance. Cette architecture hiérarchisée permet une séparation claire des 

responsabilités et des privilèges. 

Les opérations fondamentales du TPM 2.0 s'articulent autour de plusieurs fonctions 

cryptographiques essentielles : 

• La génération et la protection de clés cryptographiques, avec la possibilité de 

créer des clés qui ne peuvent jamais quitter le périmètre sécurisé du TPM ("non-

migratable keys"). 

• L'attestation, permettant de prouver de manière cryptographique l'état d'intégrité 

d'un système à un tiers vérificateur, basé sur les valeurs PCR signées par une 

clé d'attestation. 

• Le scellement (sealing) et le descellement (unsealing) de données, assurant que 

les informations sensibles ne peuvent être déchiffrées que si la plateforme se 

trouve dans un état d'intégrité prédéfini. 

• La mesure et l'enregistrement sécurisés de l'état du système via des opérations 

d'extension des registres PCR 

4.1.2 Modèle de sécurité 

Le modèle de sécurité du TPM 2.0 repose sur plusieurs mécanismes de protection 

complémentaires qui garantissent la robustesse de l'ensemble du système. 

Le TPM 2.0 implémente un mécanisme de protection contre les attaques par force brute. 

Ce système verrouille automatiquement le TPM après un nombre défini de tentatives 

d'authentification échouées (typiquement 32), puis impose un délai croissant entre 

chaque nouvelle tentative, celui-ci est rénitialisé après un certain temps. 

Au-delà de cette protection, le TPM 2.0 introduit un système de sessions d’autorisation 

démarrées via TPM2_StartAuthSession(), divisées en sessions HMAC et sessions Policy. 

Les sessions HMAC reposent sur une clé secrète partagée pour authentifier l’utilisateur, 

tandis que les sessions Policy permettent de composer des règles complexes combinant 

l’état des PCR, des contraintes temporelles, des signatures externes ou même des 

localités. 
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Chaque requête TPM est transmise dans un tampon de commande structuré : un 

préambule de dix octets qui inclut notamment les champs tag (type de session), 

commandSize et commandCode. Ce découpage permet une hiérarchisation des 

commandes. 

• Commandes non restreintes : Accessibles sans autorisation préalable, 

principalement utilisées pour l'interrogation des capacités du TPM (ex. 

TPM2_GetCapability, TPM2_GetRandom) 

• Commandes authentifiées : Requièrent une session d'autorisation valide et sont 

utilisées pour les opérations cryptographiques courantes (ex. TPM2_Create, 

TPM2_Sign) 

• Commandes privilégiées : Réservées aux propriétaires des hiérarchies TPM, 

permettent la modification de l'état global du module (ex. TPM2_Clear, 

TPM2_HierarchyControl) 

• Commandes de maintenance : Utilisables uniquement en mode Field Upgrade 

Mode (FUM) pour les mises à jour du firmware 

Enfin, la sécurité physique et logique du TPM 2.0 est garantie par une isolation matérielle 

renforcée (puce dédiée, stockage non volatile protégé), des mécanismes anti-tampering 

et des anti-canaux auxiliaires exigeant des implémentations « constant time » avec en 

plus des commandes contrôlées de verrouillage et de réinitialisation de l’état interne. Cet 

empilement de protections fait du TPM 2.0 une racine de confiance robuste, capable de 

répondre aux exigences des environnements PC, cloud et IoT tout en restant extensible 

face aux nouvelles menaces. 

4.2 Cas d'usage de protection avec TPM 

Le TPM 2.0 offre un ensemble de primitives cryptographiques qui peuvent être combinées 

pour répondre à différents besoins de sécurité. Cette section examine les principaux cas 

d'usage où le TPM apporte une valeur ajoutée significative en termes de protection 

matérielle, depuis la sécurisation du processus de démarrage jusqu'à la protection des 

données sensibles en passant par les mécanismes d'attestation. 

4.2.1 Protection de l'intégrité du firmware 

La protection de l'intégrité du firmware constitue l'un des cas d'usage les plus critiques du 

TPM 2.0, le TPM offre des mécanismes permettant de détecter toute altération 

malveillante du firmware et d'établir une chaîne de confiance dès le démarrage. 

Le processus de mesure d'intégrité s'inscrit dans le cadre du Secure Boot, où chaque 

composant du firmware est mesuré cryptographiquement avant son exécution. Ces 

mesures sont enregistrées dans les registres PCR via des opérations d'extension selon 

la formule présentée en section 4.1.1, créant ainsi une chaîne de mesures inaltérable qui 

reflète fidèlement la séquence de démarrage. 

La séquence typique de protection comprend : 

• L'exécution du code d'initialisation immuable (Root of Trust for Measurement)   
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• Le calcul d'un hachage cryptographique du firmware UEFI/BIOS   

• L'extension de cette mesure dans les PCR appropriés 

• La mesure récursive de chaque composant suivant dans la chaîne 

Cette approche, permet de détecter toute modification non autorisée des composants 

firmware. En effet, une altération du firmware entraînerait inévitablement une modification 

des valeurs enregistrées dans les PCR.  

Les standards récents, notamment le RFC 9683 publié par l'IETF en décembre 2024 

(« Remote Integrity Verification of Network Devices Containing Trusted Platform 

Modules »), soulignent l'importance cruciale de cette première mesure effectuée par le 

RTM, qui constitue le fondement de toute la chaîne de confiance ultérieure.  

Au-delà de la simple détection, le TPM permet d'implémenter des mécanismes de 

réaction aux compromissions via le « scellement conditionnel ». Cette technique garantit 

que les données sensibles, comme les clés de chiffrement de disque, restent 

inaccessibles si le firmware a été altéré. Dans le contexte des réseaux d'entreprise, cette 

capacité permet de mettre en œuvre des politiques d'accès, où seuls les dispositifs 

présentant un état firmware validé sont autorisés à accéder aux ressources souhaitées. 

Il convient toutefois de noter que la protection TPM reste limitée face à certaines attaques 

matérielles. Une compromission au niveau du circuit intégré ou des bus de 

communication peut potentiellement contourner ces mécanismes, rappelant l'importance 

d'une approche défense en profondeur. 

4.2.2 Attestation de l'état système 

L'attestation représente l'une des fonctionnalités les plus distinctives du TPM 2.0, 

permettant à une plateforme de prouver cryptographiquement son état d'intégrité à un 

vérificateur distant. Cette capacité prend une importance dans les architectures Zero 

Trust où la confiance ne peut être présupposée et doit être continuellement vérifiée. 

Le TPM supporte plusieurs formes d'attestation, dont la plus fondamentale est l'attestation 

des valeurs PCR. Dans ce processus, le vérificateur émet un défi cryptographique 

(nonce) que le TPM doit signer conjointement avec les valeurs actuelles de ses registres 

PCR, en utilisant une clé d'attestation (Attestation Identity Key). La signature produite 

prouve non seulement l'authenticité du TPM, mais également l'état exact du système au 

moment de l'attestation. 

L'attestation peut également s'étendre aux objets protégés par le TPM, tels que les clés 

cryptographiques. Cela permet de certifier qu'une clé particulière possède certaines 

propriétés (par exemple, qu'elle a été générée au sein du TPM), renforçant ainsi la 

confiance dans les opérations cryptographiques réalisées avec cette clé. 

Le dernier type d’attestation est l’attestation directe anonyme (Direct Anonymous 

Attestation). Cette technique permet à un TPM de prouver qu'il est authentique et non 

compromis, sans révéler son identité unique, préservant ainsi la confidentialité de 

l'utilisateur. 
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Figure 6 - Diagramme d'attestation avec le TPM : Flux de communication entre le système 
attesté (Attestor) et le vérificateur (Verifier) montrant les étapes de challenge, signature et 

vérification (source : https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-
Attestation.html)  

Dans le contexte des infrastructures cloud, l'attestation TPM joue un rôle dans la 

sécurisation des environnements virtualisés. Comme le révèlent les documentations des 

différents fournisseurs cloud, les vTPM sont désormais largement déployés pour fournir 

des garanties d'intégrité aux machines virtuelles, permettant ainsi d'étendre les bénéfices 

de l'attestation aux environnements « multi-locataires ». L'attestation à distance permet 

aux parties tierces de vérifier l'intégrité de la chaîne de démarrage complète. Celle-ci est 

aussi utilisé dans l’architecture Zero Trust comme sur Microsoft Azure qui utilise 

l'attestation TPM pour valider l'intégrité des nœuds de calcul avant d'autoriser l'exécution 

de charges de travail jugés sensibles. 

4.2.3 Scellement de données sensibles 

Le scellement de données (sealing) constitue l'un des mécanismes de protection les plus 

puissants offerts par le TPM 2.0. Cette fonctionnalité permet de chiffrer des données de 

telle sorte qu'elles ne puissent être déchiffrées que si le système se trouve dans un état 

d'intégrité spécifique, offrant ainsi une protection contre les attaques visant à extraire des 

informations sensibles d'un système compromis. 

Le processus de scellement associe cryptographiquement les données protégées à un 

ensemble de valeurs PCR cibles, représentant l'état d'intégrité du système dans lequel le 

descellement (unsealing) sera autorisé. Techniquement, cette association est réalisée en 

chiffrant les données avec une clé dérivée des valeurs PCR spécifiées, garantissant ainsi 

https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
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que seul un système présentant ces mêmes valeurs PCR pourra réaliser l'opération de 

descellement. 

 

Figure 7 - Processus de scellement/descellement TPM - (a) Création d'un objet scellé avec une 
politique d'autorisation - (b) Descellement conditionnel des données après vérification de la 
politique et de l'état du système (source : https://tpm2-software.github.io/2021/02/17/Protecting-
secrets-at-TPM-interface.html)  

L'utilisation la plus répandue concerne les solutions Full Disk Encryption (FDE) comme 

BitLocker de Microsoft ou LUKS sous Linux. La clé principale est scellée par le TPM et 

ne peut être récupérée que si les composants critiques du système n'ont pas été altérés, 

protégeant ainsi contre les attaques de démarrage.  

Dans les environnements cloud, le scellement TPM joue un rôle crucial pour protéger les 

clés utilisées dans les enclaves sécurisées et les conteneurs confidentiels, garantissant 

que les données sensibles restent inaccessibles même à l'infrastructure d'hébergement. 

Le TPM 2.0 introduit des capacités étendues via les Enhanced Authorization Policies, 

permettant de définir des conditions de descellement combinant : Des valeurs PCR 

spécifiques (reflétant l'intégrité du système), l’authentification utilisateur (PIN, mot de 

passe, biométrie), des signatures cryptographiques externes… 

Cette flexibilité permet d'implémenter des modèles de sécurité multicouches adaptés aux 

exigences spécifiques de chaque cas d'usage. Par exemple, dans une configuration 

d'entreprise, le descellement d'une clé peut nécessiter à la fois un système intègre 

(vérification PCR), une authentification forte de l'utilisateur (carte d’accès + PIN), et une 

validation temporelle (accès uniquement pendant les heures ouvrables). Dans un 

environnement industriel déployé sur des dispositifs IoT, le scellement TPM peut garantir 

que les clés cryptographiques utilisées pour la communication réseau ne soient 

accessibles que si le firmware et les composants critiques n’ont subi aucune altération, 

limitant ainsi fortement les possibilités d’une intrusion par des modifications matérielles 

ou logicielles non autorisées. 

Un défi opérationnel majeur concerne la gestion des mises à jour légitimes. Les 

modifications du firmware ou des composants système altèrent inévitablement les valeurs 

PCR, rendant impossible le descellement des données. Des stratégies appropriées 

doivent être mises en place : 

https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html
https://tpm2-software.github.io/2021/02/17/Protecting-secrets-at-TPM-interface.html
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• Descellement temporaire et re-scellement avec les nouvelles valeurs PCR 

• Utilisation de politiques flexibles autorisant plusieurs ensembles de PCR valides 

• Mécanismes de récupération d'urgence (recovery keys) pour les situations 

exceptionnelles 

4.3 Limites et vulnérabilités connues 

Bien que le modèle de sécurité du TPM 2.0 soit robuste en théorie, de nombreuses 

faiblesses d'implémentation existent en pratique. Diverses études récentes mettent en 

évidence ces vulnérabilités pratiques, notamment des failles cryptographiques ou 

physiques, démontrant ainsi que la sécurité offerte par le TPM n’est efficace que sous 

réserve d’une mise en œuvre rigoureuse et continue. 

4.3.1 Faiblesses d'implémentation 

Malgré la robustesse théorique de son modèle de sécurité, le TPM 2.0 n'est pas exempt 

de faiblesses d'implémentation qui peuvent compromettre significativement les garanties 

qu'il est censé fournir. 

Au-delà des attaques par canaux auxiliaires comme TPM-FAIL décrites précédemment 

(voir section 3.2.2), l'écosystème TPM 2.0 a révélé une multiplicité de vulnérabilités 

d'implémentation affectant différentes couches du système. Une vaste étude de Svenda 

[TPMScan 2024] a révélé une grande variabilité dans la qualité des implémentations 

disponibles sur le marché. L'étude a notamment identifié des déficiences dans la 

génération de nombres aléatoires de certains TPM, rendant potentiellement vulnérables 

l'ensemble des opérations cryptographiques qui en dépendent. 

En 2023, des chercheurs de Quarkslab ont découvert deux vulnérabilités majeures (CVE-

2023-1017 et CVE-2023-1018) dans l'implémentation de référence du TPM 2.0 fournie 

par le Trusted Computing Group. Ces vulnérabilités, respectivement de type 

dépassement de tampon en écriture et en lecture, peuvent être déclenchées par des 

applications en mode utilisateur envoyant des commandes TPM 2.0, plus particulièrement 

la fonction CryptParameterDecryption() qui est utilisé pour traiter les paramètres chiffrés 

des commandes TPM. Selon l'analyse de SecurityWeek, cette faille permettait à un 

attaquant authentifié disposant d'un accès local d'accéder en lecture à des données 

sensibles ou de remplacer des données normalement protégées par le TPM, comme les 

clés cryptographiques. L'impact potentiel inclut la divulgation d'informations sensibles, 

l'élévation de privilèges, et dans certains cas, l'exécution arbitraire de code au sein du 

TPM. [Falcon 2023] 

Comme l'a révélé la publication détaillée de Quarkslab, ces failles affectent 

potentiellement des milliards d'appareils, y compris des TPM matériels et des 

implémentations logicielles utilisées dans les solutions de virtualisation majeures comme 

VMware, Microsoft Hyper-V et QEMU. [Falcon 2023] 

Au-delà des vulnérabilités purement cryptographiques, des faiblesses ont également été 

identifiées dans la mise en œuvre des mécanismes de protection physique des TPM. Bien 

que conçus pour résister aux tentatives d'extraction physique d'informations, certains 



42 

 

TPM se sont révélés vulnérables à des techniques avancées d'analyse invasive, telles 

que l'analyse par sonde électromagnétique ou la microscopie à faisceau d'ions focalisés 

[Forgette 2022]. Ces vulnérabilités remettent en question l'hypothèse fondamentale selon 

laquelle les secrets stockés dans le TPM demeurent inaccessibles même face à un 

attaquant disposant d'un accès physique au dispositif. 

Les implémentations firmware du TPM (fTPM), qui exécutent les fonctionnalités TPM au 

sein d'environnements d'exécution sécurisés comme Intel SGX ou ARM TrustZone plutôt 

que dans un composant matériel dédié, présentent leurs propres vulnérabilités 

spécifiques. Ces implémentations héritent potentiellement des vulnérabilités de leur 

environnement d'exécution sous-jacent, comme l'ont démontré diverses attaques contre 

les technologies d'enclaves sécurisées [Raj 2016]. En 2022, AMD a d'ailleurs annoncé 

que leur implémentation fTPM pouvait, causer des problèmes de performance, 

nécessitant une mise à jour du BIOS pour y remédier. 

4.3.2 Contournements pratiques 

Au-delà des faiblesses d'implémentation intrinsèques au TPM lui-même, diverses 

techniques de contournement pratique ont été développées pour neutraliser les 

protections offertes par le TPM 2.0, notamment dans le contexte de la sécurisation du 

processus de démarrage et de la protection des données. Comme l'ont souligné plusieurs 

chercheurs [Svenda 2024], le modèle de sécurité du TPM repose sur l'hypothèse 

fondamentale que tous les composants de la chaîne de démarrage jusqu'au point de 

mesure sont exempts de vulnérabilités, une hypothèse irréaliste dans les systèmes. 

Les TPM sont généralement connectés au système principal sur des bus standardisés 

(SPI, I2C ou LPC). Des attaquants peuvent intercepter ou modifier les communications 

sur ces bus, potentiellement en injectant des commandes malveillantes ou en capturant 

des informations sensibles. Bien que ces attaques nécessitent un accès physique, elles 

peuvent compromettre fondamentalement la sécurité du système TPM [Svenda 2024]. 

Une approche de contournement concerne les attaques de réinitialisation des PCR. Dans 

certaines configurations, un attaquant disposant de privilèges administratifs peut forcer la 

réinitialisation du TPM sans redémarrer le système, effaçant ainsi les mesures d'intégrité 

enregistrées dans les PCR. Cette manipulation peut permettre de contourner les 

mécanismes de scellement conditionnés aux valeurs PCR, comme l'a démontré Forgette 

[Forgette 2022] dans sa présentation « TPM is not the holy way ».  

Les attaques par démarrage à froid (Cold Boot Attacks), attaques nécessitant un 

refroidissement physique de la mémoire (typiquement avec de l'azote liquide) permettent 

de prolonger la persistance des données et permettre leur extraction. Cette technique 

permet de récupérer les clés de chiffrement une fois qu'elles ont été déchiffrées par le 

TPM et quand elles sont chargées en mémoire principale.  

Les implémentations de TPM virtuel (vTPM) présentent des vecteurs de contournement 

spécifiques. Si l'hyperviseur qui héberge le vTPM est compromis, toutes les garanties de 

sécurité offertes par le vTPM peuvent être invalidées. Cette vulnérabilité est 

particulièrement préoccupante dans les environnements cloud où les TPM virtuels sont 
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fréquemment utilisés pour fournir des garanties d'intégrité aux machines virtuelles [Arthur 

2015]. Les chercheurs de Quarkslab ont d'ailleurs démontré que les vulnérabilités qu'ils 

ont découvertes dans l'implémentation de référence du TPM 2.0 affectaient les principales 

solutions de virtualisation, révélant ainsi un risque d'évasion de machine virtuelle. Dans 

les environnements cloud, les vTPM introduisent des défis de sécurité supplémentaires 

liés au partage des ressources physiques. Les attaques de type "cross-VM" peuvent 

potentiellement exploiter les canaux cachés entre machines virtuelles partageant le 

même matériel physique pour compromettre l'isolation de ses machines. Cette 

problématique est particulièrement critique dans les offres de cloud public où l’utilisateur 

n’a aucun contrôle sur l’infrastructure dont il dépend. 

Cette limitation est particulièrement problématique dans le contexte des attaques "Time-

of-Check to Time-of-Use" (TOCTOU), où un attaquant peut compromettre le système 

entre le moment de la mesure d'intégrité et l'utilisation effective des ressources protégées. 

Le TPM ne peut garantir l'intégrité que jusqu'au moment de la mesure, sans aucune 

protection contre les compromissions ultérieures. Même un TPM parfaitement sécurisé 

ne peut garantir la sécurité globale d'un système si ce dernier présente des vulnérabilités 

au niveau du firmware UEFI/BIOS, du chargeur d'amorçage ou du système d'exploitation.  

L'analyse des vulnérabilités du TPM 2.0 révèle un paradoxe fondamental : ce composant 

censé sécuriser l'ensemble du système introduit lui-même de nouvelles surfaces 

d'attaque. Les vulnérabilités identifiées, allant des faiblesses cryptographiques aux 

erreurs d'implémentation, illustrent la difficulté à créer un composant de sécurité 

véritablement infaillible. Microsoft ayant imposé l’utilisation du TPM en 2021, comme 

composant de sécurité obligatoire pour Windows 11, quand ce composant lui-même a été 

affecté par des vulnérabilités critiques.  

Ces contournements pratiques illustrent une réalité fondamentale de la sécurité 

informatique : aucun mécanisme de protection isolé, ne peut garantir une sécurité 

absolue. Une approche de défense en profondeur, combinant différentes technologies de 

protection et pratiques de sécurité, reste indispensable pour établir un niveau de sécurité 

robuste face à des adversaires déterminés. 

4.4 Synthèse critique des forces et faiblesses du TPM 2.0 

Avant de conclure ce mémoire, il est essentiel de réaliser une synthèse structurée des 

capacités et limites du TPM 2.0, permettant d'identifier clairement ses domaines 

d'efficacité et ses points de vulnérabilité. 

4.4.1 Forces du TPM 2.0: contextes d'efficacité 

Le TPM 2.0 offre une protection significative dans plusieurs scénarios d'attaque, bien que 

cette protection soit soumise à certaines conditions : 

Protection contre les attaques logicielles conventionnelles : Le TPM offre une protection 

significative pour les clés cryptographiques et secrets contre les attaques purement 

logicielles, même avec des privilèges élevés dans le système d'exploitation. Les 

opérations cryptographiques critiques peuvent s'exécuter entièrement dans 
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l'environnement isolé du TPM, sans jamais exposer les clés privées à la mémoire 

principale. Toutefois, l'efficacité réelle dépend fortement de la qualité d'implémentation 

des applications qui interagissent avec le TPM, certaines pouvant inadvertamment 

exposer des données sensibles en mémoire après utilisation. 

Préservation de l'intégrité du démarrage : La capacité de mesure et d'attestation du TPM 

permet de détecter efficacement les modifications non autorisées du firmware et des 

composants de démarrage. Cette vérification d'intégrité établit une première ligne de 

défense contre les bootkits et les rootkits. Il convient cependant de noter que le TPM 

détecte mais n'empêche pas l'exécution de code malveillant, il conditionne simplement 

l'accès aux données protégées à l'intégrité du système. 

Protection conditionnelle des données : Le mécanisme de scellement garantit que les 

données sensibles (comme les clés de chiffrement de disque) restent inaccessibles si le 

système a été altéré, offrant une protection même en cas de vol physique du dispositif. 

Cette protection demeure efficace contre les attaquants disposant de compétences et de 

ressources limitées, mais présente des vulnérabilités face aux attaques logiques 

exploitant la fenêtre temporelle entre le descellement et l'utilisation des données. 

Attestation à distance fiable : Le TPM permet de prouver cryptographiquement l'état 

d'intégrité d'un système à un vérificateur distant, facilitant la mise en œuvre de politiques 

de sécurité basées sur l'état réel du système plutôt que sur des présomptions de 

confiance. Cette capacité reste particulièrement précieuse dans les architectures Zero 

Trust, bien qu'elle ne reflète que l'état du système au moment précis de l'attestation. 

4.4.2 Faiblesses du TPM 2.0: scénarios de vulnérabilité 

Malgré ses capacités, le TPM présente plusieurs limitations fondamentales : 

Le TPM offre une résistance limitée face à un attaquant disposant d'un accès physique 

prolongé et d'équipements spécialisés. Les attaques par canaux auxiliaires (analyse de 

consommation, émissions électromagnétiques), les attaques par injection de fautes, et 

l'interception des bus de communication (SPI, LPC) peuvent compromettre son isolation. 

Hypothèse d'intégrité initiale non garantie : Le modèle de sécurité du TPM repose sur 

l'intégrité du premier code exécuté (CRTM - Core Root of Trust for Measurement). Si ce 

composant est compromis avant la première mesure, toute la chaîne de confiance 

s'effondre sans possibilité de détection. Des mécanismes comme le DRTM tentent 

d'atténuer ce problème en établissant une racine de confiance après le démarrage initial, 

mais présentent leurs propres limitations et peuvent être contournés par des attaques 

sophistiquées. 

Vulnérabilités d’implémentation : Comme l'ont démontré les failles TPM-FAIL et les 

vulnérabilités CVE-2023-1017/1018, même un composant de sécurité critique peut 

contenir des défauts d'implémentation significatifs qui compromettent son modèle de 

sécurité théorique. Ces vulnérabilités, souvent découvertes bien après le déploiement 

massif, affectent potentiellement des millions de systèmes et compliquent la mise en 

place de correctifs à grande échelle. 
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Protection temporelle limitée : Le TPM ne peut garantir qu'un instantané d'intégrité au 

moment de la mesure, créant une fenêtre de vulnérabilité TOCTOU. Un système vérifié 

comme intègre peut être compromis immédiatement après l'attestation. 

Isolation imparfaite des implémentations non discrètes : Les fTPM et vTPM héritent des 

vulnérabilités de leur environnement d'exécution sous-jacent (processeur, hyperviseur), 

compromettant potentiellement leur isolation. 

Le TPM se révèle particulièrement inefficace dans les scénarios suivants : 

1. Attaques avec accès physique : Un attaquant disposant d'équipements spécialisés 

(microscopes électroniques, stations de micro-sondage, générateurs d'impulsions 

électromagnétiques) peut contourner la plupart des protections du TPM. 

2. Compromission précoce de la chaîne de démarrage : Une modification du firmware 

avant la première mesure ou une corruption du CRTM annule l'efficacité de toute la 

chaîne de confiance, un vecteur particulièrement exploité par les attaques voulant 

cibler des infrastructures critiques. 

3. Attaques transitives via des périphériques connectés : Les contrôleurs DMA (cartes 

réseau, GPU) peuvent contourner les protections logicielles et accéder directement 

à la mémoire, y compris aux zones contenant temporairement des clés descellées 

par le TPM, même sur des systèmes correctement configurés si l'IOMMU présente 

des vulnérabilités. 

4. Environnements virtualisés partagés : Dans les infrastructures cloud utilisant des 

vTPM, les attaques inter-VM ou les compromissions de l'hyperviseur peuvent 

neutraliser l'isolation du TPM virtuel. 

5. Gestion de mises à jour : Les modifications normales du système (mises à jour 

firmware ou OS) altèrent les valeurs PCR, nécessitant des mécanismes de migration 

des données scellées qui créent souvent de nouvelles vulnérabilités. 

Cette analyse confirme que le TPM 2.0, malgré ses capacités cryptographiques robustes, 

doit être considéré comme un élément nécessaire mais non suffisant d'une architecture 

de sécurité défensive en profondeur. Sa valeur réside dans sa contribution à élever 

considérablement le niveau de difficulté des attaques, particulièrement celles d'origine 

logicielle. Pour certains modèles de menace bien définis et limités, notamment face à des 

attaquants sans ressources significatives ou sans accès physique, le TPM peut fournir 

des garanties adéquates. Cependant, il ne représente pas une solution ultime face aux 

attaquants déterminés disposant de ressources significatives ou d'un accès physique, 

même relativement bref. 
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Conclusion 

5. Conclusion 

Dans le cadre de ce mémoire, nous avons exploré en profondeur les menaces 

émergentes ciblant les couches matérielles et firmwares des systèmes informatiques 

modernes, avec une analyse comparative spécifique des mécanismes de protection 

déployés sur les plateformes x86/x64 et les systèmes embarqués (ARM/RISC-V). Cette 

étude s'est particulièrement concentrée sur le Trusted Platform Module 2.0 (TPM 2.0), en 

examinant son rôle critique dans la protection des systèmes à bas niveau. 

Nous avons d'abord dressé une cartographie des attaques matérielles et firmwares, 

soulignant la sophistication croissante des menaces comme les bootkits UEFI, les 

injections de fautes, les attaques par canaux auxiliaires et les vulnérabilités liées aux 

interfaces matérielles telles que DMA et JTAG. Cette analyse a révélé que les menaces 

évoluent constamment et exploitent souvent les limites structurelles des mécanismes de 

défense traditionnels. 

Notre étude comparative a ensuite permis d'établir les spécificités et les contraintes 

inhérentes à chaque catégorie de systèmes. Tandis que les plateformes conventionnelles 

bénéficient de ressources matérielles et énergétiques significatives permettant 

l’intégration de mécanismes de sécurité avancés comme Secure Boot et TPM discret 

(dTPM), les systèmes embarqués doivent composer avec des contraintes strictes, 

nécessitant des solutions optimisées telles qu'ARM TrustZone, RISC-V PMP, l’utilisation 

des Secure Elements et des enclaves sécurisées. 

Le TPM 2.0 s’est avéré être un élément central dans la création d’une chaîne de confiance 

robuste, capable de garantir l’intégrité du firmware à travers des mécanismes 

cryptographiques solides tels que la mesure d’intégrité et le scellement des données 

sensibles. Cependant, nous avons également mis en évidence des vulnérabilités 

notables, tant dans les implémentations matérielles que dans les variantes logicielles du 

TPM. Des faiblesses d’implémentation aux contournements pratiques via les bus de 

communication, ces limitations rappellent l'importance d'une stratégie de défense en 

profondeur plutôt que d'une dépendance exclusive à un composant de sécurité unique. 

L'évolution rapide des architectures matérielles et l'émergence de nouvelles classes 

d'attaques suggèrent plusieurs axes de recherche prometteurs : L'impact de 

l'informatique quantique sur les mécanismes de protection actuels, notamment les 

primitives cryptographiques du TPM, l'intégration de mécanismes d'intelligence artificielle 

pour la détection proactive des attaques matérielles. 
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En conclusion, bien que le TPM 2.0 constitue une avancée significative dans la 

sécurisation des systèmes, il ne saurait suffire seul face à la complexité actuelle des 

menaces matérielles et firmware. Seule une approche intégrée, adaptative et multicouche 

pourra répondre efficacement aux défis sécuritaires de demain, ouvrant ainsi de 

nombreuses perspectives pour les recherches futures en cybersécurité matérielle. 
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Glossaire 

6. Glossaire 

ARM  Advanced RISC Machine 

BIOS Basic Input/Output System 

DMA Direct Memory Access 

dTPM discrete Trusted Platform Module 

DRTM Dynamic Root of Trust for Measurement 

EMFI Electromagnetic Fault Injection 

fTPM firmware Trusted Platform Module 

I2C Inter-Integrated Circuit 

IoT Internet of Things 

JTAG Joint Test Action Group 

KEK Key Exchange Key 

LPC Low Pin Count 

MQTT Message Queuing Telemetry Transport 

PCR Platform Configuration Register 

PK Platform Key 

RISC-V Reduced Instruction Set Computer - Five 

RoT Root of Trust 

SE Secure Element 

SoC System On a Chip 

SPI Serial Peripheral Interface 

TEE Trusted Execution Environment 

TOCTOU Time-of-Check to Time-of-Use 

TPM Trusted Platform Module 
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UEFI Unified Extensible Firmware Interface 

vTPM virtual Trusted Platform Module 
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