
Environment Variable and Set-UID
Program Lab

Ivan KRIVOKUCA (22306432)
Yohann LETELLIER (22317638)

26 janvier 2025

1 / 13

Table des matières
1. Task 1 : Manipulating Environment Variables
2. Task 2 : Passing Environment Variables from Parent
Process to Child Process
3. Task 3 : Environment Variables and execve()
4. Task 4 : Environment Variables and system()
5. Task 5 : Environment Variable and Set-UID Programs
6. Task 6 : The PATH Environment Variable and Set-UID
Programs.
7. Task 7 : The LD_PRELOAD Environment Variable and
Set-UID Programs
8. Task 8 : Invoking External Programs Using system()
versus execve()
9. Task 9 : Capability Leaking

2 / 13

Task 1 : Manipulating Environment Variables

Commandes Principales
• printenv : Affiche toutes les variables
• printenv VAR : Affiche une variable spécifique
• export VAR=valeur : Définit une variable
• unset VAR : Supprime une variable

3 / 13

Task 2 : Passing Environment Variables from Parent
Process to Child Process
Étude de l’héritage des variables d’environnement lors d’un fork()
• file1 : Version enfant : printenv()
• file2 : Version parent : printenv()
• Différence : diff file1 file2

Aucune différence entre les deux exécutions

Résultat
• Aucune différence détectée donc copie complète
• Preuve que l’enfant hérite intégralement des variables

4 / 13

Task 3 : Environment Variables and execve()
Version 1 : Sans environnement

• execve(..., NULL)
• Aucune variable affichée

Version 2 : Avec environnement
• execve(..., environ)
• Toutes les variables affichées

Version 1 exécuté en 1er puis la Verison 2

Conclusion
• execve() nécessite une transmission explicite des variables
• Aucun héritage automatique

5 / 13

Task 4 : Environment Variables and system()

Étudier la transmission des variables via system().

Comportement
• Transmission automatique des variables
• Utilisation de /bin/sh qui hérite de l’environnement du processus appelant

Implications de Sécurité
• Risque d’exploitation via variables d’environnement

6 / 13

Task 5 : Environment Variable and Set-UID Programs

Concept Set-UID
Programme s’exécutant avec les privilèges du propriétaire plutôt que de l’utilisateur

Figure – -rwsr-xr-x (le s indique le bit Set-UID)

Variables Testées
• PATH
• LD_LIBRARY_PATH
• Variables personnalisées

Figure – Configuration initiale

7 / 13

Résultats des Tests

(a) Test PATH
(b) Test variables
personnalisées

(c) Test LD_LIBRARY_PATH

Observations
• PATH et MA_VARIABLE héritées
• LD_LIBRARY_PATH non hérité

Sécurité Linux
• Protection contre l’injection de librairies
• Variables LD_* bloquées pour les Set-UID

8 / 13

Task 6 : The PATH Environment Variable and Set-UID
Programs.
echo "/bin/bash -p" > /tmp/ls #Créer un faux ls
chmod +x /tmp/ls
export PATH=/tmp :$PATH # Modifier PATH
sudo ln -sf /bin/zsh /bin/sh # Contourner la protection dash

Résultat
• Shell root obtenu via ./vuln

Vulnérabilité
• Confiance aveugle dans le PATH utilisateur → possiblité de substitution de

commandes
9 / 13

Task 7 : The LD_PRELOAD and Set-UID Programs

Scénario Commande Comportement Explication
Programme
normal

export LD_PRELOAD=./lib
mylib.so.1.0.1
./myprog

"I am not sleeping !" LD_PRELOAD force le
remplacement de sleep()

Set-UID root sudo chown root myprog
chmod 4755 myprog
./myprog

Aucun message
(utilise sleep() origi-
nal)

Ignore LD_PRELOAD
pour les programmes
Set-UID non-root

Root shell sudo -s
export LD_PRELOAD=...
./myprog

"I am not sleeping !" LD_PRELOAD est res-
pecté car l’environne-
ment est hérité du pro-
priétaire (root)

User1 Set-UID sudo chown user1 myprog
./myprog

Aucun message Le chargeur dynamique
ignore LD_PRELOAD
si l’utilisateur réel ̸=
propriétaire du pro-
gramme

10 / 13

Task 8 : Invoking External Programs Using system() versus
execve()

Commande :
./catall "fichier.txt; rm -f /tmp/test"

Figure – Exploitation réussie via system()

Figure – Protection avec execve()

11 / 13

Analyse Comparative des Méthodes

Critère system() execve()

Mécanisme Exécution via /bin/sh avec in-
terprétation

Exécution directe sans shell

Traitement des
arguments

Interprétation des métacarac-
tères (;, |, etc.)

Arguments traités comme lit-
téraux

Niveau de risque Critique : Injection de com-
mandes possible

Minimal : Pas d’interprétation

Recommandation À éviter Méthode préférée pour Set-
UID

12 / 13

Task 9 : Capability Leaking
Exploitation Analyse

• FD créé avec privilèges root
• setuid() change l’UID
• FD conserve les droits root (car le noyau vérifie les

permissions au moment de l’ouverture, pas lors de
l’écriture)

• Écriture via FD hérité

Correctifs
• Fermer le file-descripteur avant setuid() → close(fd)

Figure – Vérification de la correction

13 / 13

	Task 1: Manipulating Environment Variables
	Task 2: Passing Environment Variables from Parent Process to Child Process
	Task 3: Environment Variables and execve()
	Task 4: Environment Variables and system()
	Task 5: Environment Variable and Set-UID Programs
	Task 6: The PATH Environment Variable and Set-UID Programs.
	Task 7: The LD_PRELOAD Environment Variable and Set-UID Programs
	Task 8: Invoking External Programs Using system() versus execve()
	Task 9: Capability Leaking

