
Buffer Overflow Attack Lab (Set-UID
Version)

Ivan KRIVOKUCA (22306432)

26 janvier 2025

1 / 14



Table des matières

1. Task 1 : Getting Familiar with Shellcode
2. Task 2 : Understanding the Vulnerable Program
3. Task 3 : Launching Attack on 32-bit Program
4. Task 4 : Launching Attack without Knowing Buffer Size
5. Task 5 : Launching Attack on 64-bit Program (Level 3)
6. Task 6 : Launching Attack on 64-bit Program (Level 4)
7. Task 7 : Defeating dash’s Countermeasure
8. Task 8 : Defeating Address Randomization
9. Tasks 9 : Experimenting with Other Countermeasures

2 / 14



Task 1 : Getting Familiar with Shellcode

Figure – Exécution du Shellcode

3 / 14



Task 2 : Understanding the Vulnerable Program

• La fonction bof() crée un buffer local de taille BUF_SIZE (défini à 100 dans le code)
• Le programme lit jusqu’à 517 octets depuis un fichier badfile
• Ces données sont copiées sans vérification dans le buffer de 100 octets via strcpy()

Problème
Cette différence de taille (517 vs 100) crée la vulnérabilité du buffer overflow

4 / 14



Task 3 : Launching Attack on 32-bit Program

Figure – Analyse de la pile avec GDB sur stack-L1-dbg

• Adresse du buffer : 0xffffdfac (début de la zone vulnérable)
• EBP (base pointer) : 0xffffdfd8 (pointeur de frame)

5 / 14



Construction du payload dans exploit.py
Offset = 112
• Différence EBP - Buffer : 0x6C (108 octets)
• Offset de l’adresse de retour : 108 + 4 = 112 octets → permet d’écraser

précisément l’adresse de retour
Start = 400 : Position du shellcode
• Placé après une longue séquence de NOPs (pour augmenter la fiabilité)

Ret = adresse_buffer + 200 : Point d’entrée dans le NOP sled
• Les instructions NOP (0x90) font "glisser" l’exécution vers le shellcode, même si

l’adresse ciblée est légèrement inexacte.

Exploit.py Succès !
6 / 14



Task 4 : Launching Attack without Knowing Buffer Size
Contrainte principale : Buffer size entre 100 et 200 bytes

Solution implémentée
• Positionnement du shellcode : À la fin du payload (517 - taille shellcode)
• Stratégie "d’écrasement" :

• Écriture multiple de l’adresse de retour
• Test les offsets par pas de 4 → Couvre toutes les positions possibles du frame pointer

• Adresse de retour : buffer + 200 (zone NOP sled)

Exploit.py Succès !

7 / 14



Task 5 : Launching Attack on 64-bit Program

Contraintes spécifiques 64-bit
• Registres : rbp (au lieu de ebp), rsp
• Adressage : 8 bytes pour les adresses et limités : 0x00 à 0x00007FFFFFFFFFFF
• Problème avec strcpy() qui s’arrête au premier octet nul

Adaptations nécessaires
• Modification de la taille des adresses (L = 8)
• Utilisation du shellcode 64-bit
• Stratégie de positionnement adaptée pour éviter les octets nuls –> mettre le

shellcode au début (start = 0)
• Offset = rbp - &buffer + 8 (Return Address 64bits) = 208 + 8 = 216 bytes.

8 / 14



Task 6 : Launching Attack on 64-bit Program
• Taille du buffer extrêmement limitée (10 octets) → impossible de stocker

shellcode/NOPs
• Nécessité d’optimiser le positionnement du shellcode

Solution
• Placer le shellcode après l’adresse de retour.
• Utiliser un seul saut vers le shellcode.

Figure – Analyse de la pile avec GDB

9 / 14



Task 6 : Launching Attack on 64-bit Program

Exploit.py

Succès !

10 / 14



Task 7 : Defeating dash’s Countermeasure

Mécanisme de protection
• dash vérifie l’égalité entre UID effectif et réel
• Conséquence : Abandon des privilèges (retour à l’UID réel).

Stratégie de contournement → Ajout d’un appel à setuid(0) avant execve() :
\x31\xdb\x31\xc0\xb0\xd5\xcd\x80

Figure – Shell root

11 / 14



Task 8 : Defeating Address Randomization

Contexte
• ASLR activé : kernel.randomize_va_space=2
• Entropie limitée sur 32-bit : 219 possibilités
• Stack : Adresse de base aléatoire à chaque exécution.

Approche par brute force

Limitations
Impossible en 64bits (entropie de 28+ bits).

12 / 14



Task 9.a : Turn on the StackGuard Protection

Fonctionnement de StackGuard (activé par défaut dans gcc > 4.3.3)
• Ajout une valeur ("canari") : Valeur aléatoire placée entre le buffer et l’adresse de

retour.
• Avant de quitter la fonction, le programme vérifie si le canari a été altéré (si oui,

crash).

Compilation :
gcc -DBUF_SIZE=100 -z execstack -m32 -o stack-L1 stack.c
sudo chown root stack-L1 && sudo chmod 4755 stack-L1

• Détection de la corruption de la pile
• Terminaison du programme en cas de modification
• Efficacité contre les buffer overflows classiques 13 / 14



Task 9.b : Turn on the Non-executable Stack Protection

Protection Pile Non-Exécutable (NX)
• NX Bit : Le noyau interdit l’exécution de code sur la pile via un bit "No-Execute".
• Compilation sans -z execstack pour marquer la pile comme non-exécutable.

14 / 14


	Task 1: Getting Familiar with Shellcode
	Task 2: Understanding the Vulnerable Program
	Task 3: Launching Attack on 32-bit Program
	Task 4: Launching Attack without Knowing Buffer Size
	Task 5: Launching Attack on 64-bit Program (Level 3)
	Task 6: Launching Attack on 64-bit Program (Level 4)
	Task 7: Defeating dash’s Countermeasure
	Task 8: Defeating Address Randomization
	Tasks 9: Experimenting with Other Countermeasures

